ForestColl: Efficient Collective Communications on Heterogeneous

Network Fabrics

Presented by Liangyu Zhao

University of Washington, Microsoft Research

ForestColl 1/24

Bottom Line Up Front

o Problem Statement:

o Network topologies of ML hardware platforms are highly diverse and heterogeneous.
o Existing communication libraries cannot fully unlock their performance potential.

@ ForestColl: a high-performance solution for collective communications on any
network topology.
o Collective Communication: up to 3x faster than vendor-provided libraries.
o Improved Training Efficiency: 20% speedup in large language model (LLM) training.
o Schedule Generation: orders of magnitude (>10%x) faster than previous methods.

ForestColl 2/24

Collective Communication

@ Originally a topic in HPC, it is now extensively used for gradient, parameter, and
activation synchronization in distributed ML training and inferencing.
o Allgather is a collective where every node/GPU broadcasts a distinct shard of data.

o reduce-scatter = reversed allgather
o allreduce = reduce-scatter + allgather

Allgather
a, b, c X a|b|c = a|b|c —_— a, b, c
a
Allreduce
a b c X b = N E——— a b7 c
@

Reduce-Scatter
—_—

ForestColl 3/24

Challenges

We aim to derive efficient communication schedules for any given network topology.
o Diversity & Heterogeneity: today's ML network topologies are highly diverse
across hardware platforms and heterogeneous within individual networks.

@ Scalability: optimizing aggregation and multicast traffic requires strict data
dependency, often resulting in NP-hard discrete optimization.

NVSwitch

30065/5 I I I
(=l {o=en .
0GB/s. | |
25GB/s I
‘_’ GPU [3— GPU | GPU
=

< InfiniBand Switch Fabric

f
6GB/s | \
GPU [+ GPU[F= —
‘ i i
i i
ool

InfiniBand Switch Fabric # of nodes 4 9 16 25 36
SCCL [PPoPP 21] | 0.61s | 1.00s | 60s | 3286s | >10°s
TACCL [NsDI 23] | 0.45s | 67.8s | 1801s | 1802s n/a

Figure: NVIDIA DGX A100 Box Topology

Figure: AMD MI250 Box Topology
Table: Generation Time on 2D Torus (nx n)

ForestColl 4/24

ForestColl

ForestColl: construct spanning trees (forest®) with k trees rooted at each node/GPU.
o In allgather, every tree simultaneously broadcasts 1/k of the data from its root.
o Performance: the trees achieve mathematically minimum overlap/congestion.

@ Scalability: computation is in strongly polynomial time.

) S :g w

GPU [+ GPU [=— 4. GPU GP
AN

-l >@
g o

| oot | |
InfiniBand Switch
el el
mo 1]
bl o fn
e oy
:m iﬁi

Figure: 2-Box AMD MI250

ForestColl 5/24

SCCL TACCL BFB Blink TE-CCL
[PPoPP 21] | [NSDI'23] | [NSDI25] | [MLSys'20] | [siccomm 2¢) | ForestColl
Switch-based Network X v X X v v
Optimal Schedule v X X X X v
Scalable Runtime X X v v X v

Previous schedule generation methods either

@ focus on switchless direct-connect networks only;

@ lack theoretical performance guarantees for generated schedules;

o rely on NP-hard optimization methods.

ForestColl

/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a i i il
network topology?
GPU GPU GPU GPU
GPU GPU GPU GPU

‘ InfiniBand Switch ‘

)
2
-

P PU

)
2
)
2

P P

GPU GPU GPU GPU
GPU GPU GPU GPU
GPU GPU GPU GPU

Figure: 2-Box AMD MI250

ForestColl 7/24

ForestColl Optimality

GPU

Q: What is the optimal allgather throughput given a

7
network topology? .

-
HEH
.ﬁ.

Eng

)
2
2
)
=

P

)
2

.

o Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:

_ ‘ InfiniBand Switch ‘
MN-1_ Mo g

)
<
2
)
2
2

GPU GPU

)
<
2
)
2
2
)
<
2
)
2
2

B N N GPU GPU GPU GPU
~—~ N—— ~—~

shard size # of shards node bandwidth

GPU] GPU GPU

GPU U GPU GPU

Figure: 2-Box AMD MI250

ForestColl 7/24

ForestColl Optimality

P

Q: What is the optimal allgather throughput given a

7
network topology? .

-
HEH
.ﬁ.

Eng

)
2
2
)
<
=
) o
2 2

.

o Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:

_ ‘ InfiniBand Switch ‘
MNSL_ M

GPU GPU GPU GPU

)
<
2
)
2
2
)
<
2
)
2
2

B N N
~ = ~—
shard size # of shards node bandwidth U U U U
o What if the throughput is not bounded by the ol [o
bandwidth of a single node?
GPU GPU GPU GPU

Figure: 2-Box AMD MI250

ForestColl 7/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

o Consider an arbitrary network cut S.

)
<
2
)
2
2
)
<
2
)
2
2

GPU GPU GPU GPU
GPU GPU GPU GPU
GPU GPU GPU GPU

Figure: 2-Box AMD MI250

ForestColl 7/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a s S
network topology? 5 GPu il
o Consider an arbitrary network cut S. G
o Cut S implies an allgather time lower bound: S
min data exiting S shard size X num of GPUs in §
available bandwidth exiting bandwidth of S [0y “

‘ InfiniBand Switch ‘

{

)
<
2
)
2
)
<
2
)
2
2

GPU GPU GPU

)
2
2

)
<
=
)
<
e
)
<
=
)
2
2

GPU GPU

)
<
=

GPU

Figure: 2-Box AMD MI250

ForestColl 7/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a eeeeaenns S e,
network topology? : il il
o Consider an arbitrary network cut S. G
i .

o Cut S implies an allgather time lower bound:

min data exiting S shard size X num of GPUs in §

)
<
2

GPU

available bandwidth exiting bandwidth of S

‘ InfiniBand Switch ‘

@ The optimal allgather throughput is crul-[oru
determined by a bottleneck cut S*, where

)
<
2
)
2
2

)
<
2
)
2
=
)
<
=
)
2
2

num of GPUs in §*
shard size X Ul | GPy
exiting bandwidth of ™

)
<
=
)
2
2

GPU GPU GPU

is maximized across all possible network cuts.

s g

Figure: 2-Box A MI250

ForestColl 7/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a S
network topology?

o Consider an arbitrary network cut S.

o Cut S implies an allgather time lower bound:

min data exiting S shard size X num of GPUs in §

)
<
2

GPU

available bandwidth exiting bandwidth of S

‘ InfiniBand Switch ‘

@ The optimal allgather throughput is crul-[oru
determined by a bottleneck cut S*, where

)
<
2
)
2
2

)
<
2
)
2
=
)
<
=
)
2
2

num of GPUs in S* M SN V|
=| = ax = <l
exiting bandwidth of S$* N scv,save B*(S)

shard size X

)
<
=
)
<
e
)
<
=
)
2
2

GPU GPU GPU

is maximized across all possible network cuts.

s g

Figure: 2-Box A MI250

ForestColl 7/24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

o Consider an arbitrary network cut S.

o Cut S implies an allgather time lower bound:
min data exiting S shard size X num of GPUs in §

available bandwidth exiting bandwidth of S

@ The optimal allgather throughput is
determined by a bottleneck cut S*, where

InfiniBand Switch ‘

num of GPUs in S* M SN V|
shard size X == max ——°1
exiting bandwidth of S$* N scv,;save B*(S)

GPU

)
<
2
)
S
2

GPU

)
<
2
o
<
=

is maximized across all possible network cuts.

GPU GPU

)
<
=
)
S
2

@ The spanning trees generated by ForestColl o Bl =
achieve the above optimality.
@ ForestColl can efficiently compute the above Figure: 2-Box AMD MI250

optimality.

ForestColl 7/24

ForestColl Optimality

NVIDIA DGX A100:
@ When number of boxes < 3, the ingress bandwidth of a GPU is the bottleneck.
@ When number of boxes > 3, the ingress bandwidth of a box is the bottleneck.

400 A ‘ =®= GPU Cut
HTTrsressesscsciicieciiiiiiianiin : 375 A \ =®= Box Cut
NVSwitch : \ = Optimality
& 350 1
3 DL .

—.-——.-—_.__..__.

Efenjenienlenieica - Sed \
: 2 300
InfiniBand Switch g 275 A
250 A

s 0 T

Number of Boxes

‘ NVSwitch ‘

Figure: Optimality and performance bounds from different cuts of NVIDIA DGX A100 topologies

ForestColl 8/24

ForestColl Optimality

AMD MI250:
@ When number of boxes < 4, the ingress bandwidth of an OAM is the bottleneck.
@ When number of boxes > 4, the ingress bandwidth of a box is the bottleneck.

500 A ‘ == GPU Cut
\ =o= OAM Cut
‘ InfiniBand Switch ‘ < 450 \\ --- Box_Cut.
& \ = Optimality
o
GPU | GPU GPU = | GPU < 00| \
s —_——3
=) [ol —— p Sl L T T X)
GPU|. | GPU GPU|. | GPU P
< 350 N
——— g = = — @
GPU|. | GPU GPUl. | GPU
300 A
GPu | GPu U || GPu 1 > 3 2 5 6 7 B

Number of Boxes

Figure: Optimality and performance bounds from different cuts of AMD MI250 topologies

ForestColl 9/24

Ring vs ForestColl

Q: Why not just use rings?

‘ NVSwitch ‘ ‘ NVSwitch ‘
[eo] o]] e [e] [eo] o] s o] e e [[er]][] [eu]
‘ InfiniBand Switch ‘ ‘ InfiniBand Switch ‘
o] e e [er]][] [eu] [eu] o] e e e][] [eu] [eu]
‘ NVSwitch ‘ ‘ NVSwitch ‘

Figure: NCCL Ring Figure: ForestColl

Ring vs ForestColl

Q: Why not just use rings?

o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

‘ NVSwitch ‘ ‘ NVSwitch ‘
[er] [ev] [e] [e] [ev] [co] [e] [ceu] [ou] [cu] [eo] [er] [eru] ru] o]
‘ InfiniBand Switch ‘ ‘ InfiniBand Switch ‘
cru] [o] [sv] [e] [ee] [eru] o] [cru] o] [os] [su] [e] [ee] [eru] o] [ru]
‘ NVSwitch ‘ ‘ NVSwitch ‘
Figure: NCCL Ring Figure: ForestColl

ForestColl

Ring vs ForestColl

Q: Why not just use rings?
o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

‘ NVSwitch ‘ ‘ NVSwitch ‘
[er] [e] [e] [e] [ev] [co] [em] [ceu] [ou] [cu] [eo] [er] [eru] ru] o]
‘ InfiniBand Switch ‘ ‘ InfiniBand Switch ‘
cru] [o] [sv] [e] [ee] [eru] o] [ru] cru] [o] [s0] [e] [ee] [eru] o] [cru]
‘ NVSwitch ‘ ‘ NVSwitch ‘
Figure: NCCL Ring Figure: ForestColl

ForestColl

Ring vs ForestColl

Q: Why not just use rings?
o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

‘ . NVSwiteh, ‘ ‘ NVSwitch ‘
] o) o]] o]] e o] o o] o]][] o] [
‘ InfiniBand Switch)(‘ ‘ InfiniBand Switch ‘
o] [or] [ero] o] [er] [eru] [c] [er] o] [or] [ero] o] [sr] [eru] [c] [er]
‘ NVSwitch ‘ ‘ NVSwitch ‘
Figure: NCCL Ring Figure: ForestColl

ForestColl

Ring vs ForestColl

Q: Why not just use rings?

o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

o When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

‘ NVSwitch

ol o] o] o]][] o o

‘ InfiniBand Switch

D,

K]

o] [o1] o] [o]) o]]

‘ NVSwitch

Figure: NCCL Ring

‘ NVSwitch ‘

][]][] o]] o] [

‘ InfiniBand Switch ‘

o) o7] o]][]][

‘ NVSwitch ‘

Figure: ForestColl

ForestColl 10/24

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

8+8 NVIDIA A100 Allreduce

Allgather

Algather Algbw (GB/s) ForestColl / Baseline
200 100 & TV [16M | 128M | 1G | Avg | 1M [16M | 128M | 1G | Avg
ForestColl || 13.1 | 926 | 201 | 247 | 130 || - B B R
TACCL | 6.67 | 564 | 150 | 213 | 073 || 20x | 16x | 13x | 12x | 15x
100 50 NCCL Ring || 3.17 | 37.6 | 152 | 187 | 858 || 4.1x | 25x | 1.3x | 13x | 2.3x
Reduce- Algbw (GB/s) ForestColl / Baseline
5 Scatter | TM [16M | 128M | 1G | Avg || IM | 16M | 128M | 1G [Avg
g 0¥ . v ~ 017 v v r ForestColl || 9.24 | 725 | 185 | 247 | 119 - - - -1 -
g e R“’g"B Sw‘iz‘ﬁ 168 IMB 10MB 100MB 1GB | 'NCCLRing || 3.17 | 37.5 | 151 | 100 | 860 || 2.0x | 19x | 1.2x | 1.3x | 1.8x
S educe-scatter Allreduce Algbw (GB/s) ForestColl / Baseline
< —— ForestColl TV [16M | 128M | 1G [Avg | IM | 16M [128M [1G [Avg
200 —— TACCL ForestColl || 5.75 | 41.4 | 107 | 122 | 65.0 || - B B 5 B
—e— NCCLRing NCCL Tree || 4.47 | 348 | 719 | 06.8 | 488 || 13x | 12x | Tb5x | 13x | 1.3x
100 —e— NCCL Ring (MSCCL) NCCL Ring || 1.75 | 20.8 | 78.3 | 05.3 | 446 || 3.3x | 2.0x | L.ax | 13x | 2.0x
—— NCCL Tree NCCL Best || 447 | 348 | 783 | 96:8 | 501 | 1.3x | 12x | L1.Ax | 13x | 13x
)

1mMB 10MB 100MB 1GB
Data Size

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

orestColl

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

@ At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.

8+8 NVIDIA A100

Allgather Allreduce
Alather Algbw (GBS ForestColl / Baseline
200 100 8 TV [16M | 128M | 1G | Avg | 1M [16M | 128M | 1G | Avg
ForestColl || 13.1 | 926 | 201 | 247 | 130 || - B B R
TACCL | 6.67 | 564 | 150 | 213 | 073 || 20x | 16x | 13x | 12x | 15x
100 50 NCCL Ring || 3.17 | 37.6 | 152 | 187 | 858 || 4.1x | 25x | 1.3x | 13x | 2.3x
Reduce- Algbw (GBJs) ForestColl / Baseline
5 Scatter | TN [16M | 128M | 1G | Avg | IM [16M | 128M | 1G | Avg
8 [EL. v v 017 - r T ForestColl | 9.24 | 725 | 185 | 247 | 119 || - | - - -1 -
g e R“’g"B Sw‘iz‘ﬁ 168 IMB 10MB 100MB 1GB |"NCCLRing || 3.17 | 37.5 151:| 100 | 86.0 || 20x | 10x | 12x | 13x | 18x
S educe-scatter Allreduce Algbw (GBJs) ForestColl / Baseline
< —— ForestColl TV [16M | 128M | 1G | Avg | 1M [16M | 128M | 1G | Avg
200 —— TACCL ForestColl || 5.75 | 41.4 | 107 | 122 [65.0 || - B B 5 B
—e— NCCLRing NCCL Tree || 4.47 | 34.8 | 719 | 96.8 | 488 || 13x | 12x | Tb5x | 13x | 1.3x
100 —e— NCCL Ring (MSCCL) NCCL Ring || 1.75 | 20.8 | 78.3 | 05.3 | 44.6 || 3.3x | 20x | L.dx | 1.3x | 2.0x
—— NCCL Tree NCCL Best || 447 | 348 | 783 | 96.8 | 501 | 1.3x | 12x | L1.Ax | 13x | 13x
)

1mMB 10MB 100MB 1GB
Data Size

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

estColl

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:
@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.
@ At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.
@ We use MSCCL library for schedule implementation and execution.
o Implementing NCCL's ring algorithms in MSCCL yields identical performance to
NCCL, proving that ForestColl's speedups stem solely from scheduling optimizations.

8+8 NVIDIA A100

Allgather Allreduce
Alather Algbw (GBS ForestColl / Baseline
100 & IV [16M | 128M | 1G | Avg || IM | 16M | 128M | IG | Avg
200 ForestColl || 13.1 | 926 | 201 | 247 [130 | - | - B -
TACCL | 667 | 564 | 150 | 213 | 97.3 || 2.0x | 16x | 13x | 12x | 15x
100 50 NCCL Ring || 3.17 | 37.6 | 152 | 187 | 858 || 4.1x | 25x | 13x | L3x | 2.3x
Reduce- Algbw (GBJs) ForestColl / Baseline
& Scatter | TM [16M | 128M | 1G | Avg || IM | 16M | 128M | 1G [Avg
8 [EL. v v 017 - r T ForestColl | 9.24 | 725 | 185 | 247 | 119 || - | - - -1 -
$ ms ng"B Sw‘iz’“? 168 IMB 10MB 100MB 1GB | NCCL Ring || 3.17 | 37.5 151:| 190 | 86.0 || 2.0x | 10x | L.2x | 13x | 18x
H educe->catter Areduce Algbw (GBJls) ForestColl / Baseline
< —— ForestColl TV [16M | 128M | 1G | Avg | IM | 16M [128M [1G [Avg
200 —— A ForestColl || 5.75 | 41.4 | 107 | 122 | 650 | - B B B -
g NCCL Tree || 4.47 | 34.8 | 710 | 96.8 | 48.8 || 13x | 1.2x | 15x | 1.3x | 1.3x
100 NCCL Ring || 1.75 | 20.8 | 78.3 | 05.3 | 44.6 || 3.3x | 20x | L.dx | 1.3x | 2.0x
— T NCCL Best || 4.47 | 348 | 783 | 96.8 | 50.1 || 13x | 1.2x | 14x | 1.3x | 13x
o

1mMB 10MB 100MB 1GB
Data Size

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

estColl

Collective Operation Evaluation

Comparison against RCCL on 2x AMD MI250 boxes:
@ 16416 Setting: ForestColl is, on average, 91%, 87%, and 15% faster in allgather,
reduce-scatter, and allreduce.
@ 848 Setting (half of the GPUs per node): ForestColl is, on average, 2.98x, 2.86x, and
1.40x faster in allgather, reduce-scatter, and allreduce.

—e— ForestColl ~ —e— Blink+Switch ~ —e— RCCL Tree
—e— TACCL -+~ RCCL Ring '- .7

16+16 AMD MI250 8+8 AMD MI250 W

o—fen].
!

—— a1
A moom

- 015~
MB 10MB__ 100MB 1Gl MB 10MB__ 100MB 16 J—‘—l

—= | 100

1001

504

Allgather

o
3

‘ InfiniBand Switch

504 7{///* ——]_j

MB 10MB 100MB 1GB MB 10MB 100MB 1GB

w
3

Reduce-Scatter
Algbw (GB/s)
=
5
8

Alireduce
"
s

—— /ﬂ o

- 0
1MB 10MB 100MB 1GB 1MB 10MB 100MB 1GB
Data Size

el

Figure: 84-8 Topology

ForestColl 12 /24

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

B Compute WM Non-Overlapped Communication

Gemma-2 Llama-2 Llama-3
nccl

@

()

£

IS

c

S

e

el
i 138 70B 8B 70B 119B*
Model Size

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

o Larger models are more communication-bound, leading to greater improvements
with ForestColl.

B Compute WM Non-Overlapped Communication

Gemma-2 Llama-2 Llama-3
nccl

@

()

£

IS

c

S

e

el
i 138 70B 8B 70B 119B*
Model Size

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl 13 /24

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.
o Larger models are more communication-bound, leading to greater improvements
with ForestColl.
o Forced to use smaller batch sizes to avoid GPU out of memory.
o Less compute-communication overlap due to GPU resource contention (e.g., SM,
memory) between compute and communication kernels.

B Compute WM Non-Overlapped Communication

Gemma-2 Llama-2 Llama-3
nccl

@
g2
E
c
S
E 1
el

0

i 138 70B 8B 70B 119B*
Model Size

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl 13 /24

Schedule Generation Evaluation

Comparison against TACCL [NSDI '23] and TE-CCL [SIGCOMM '24]:

@ Speed: ForestColl is orders of magnitude faster in schedule generation time.

@ Quality: ForestColl's schedules always achieve theoretically optimal algorithmic bandwidth.

@ Easy to Use: ForestColl requires no parameter sweep.

—e— ForestColl —e— TACCL(c=2) —o—
—e— TACCL(c=1) —e— TACCL(c=3) —e—

Generation Time (s)

Theoretical Algbw (GB/s)

o
o o
v =

._.
2

NVIDIA A100 Topology

TACCL(c=4) —eo— TE-CCL(c=2)
TE-CCL(c=1)

AMD MI250 Topology

10*
103
102
10!
10°

32 64 128 256 512 1024

32 64 128 256 512 1024

w
=3
S

200 -

1004

300
200
100

o

—

32 64 128 256 512 1024
N GPUs

ForestColl

0 T T T u
32 64 128 256 512 1024

Schedule Generation Evaluation

Comparison against TACCL [NSDI '23] and TE-CCL [SIGCOMM '24]:
@ Speed: ForestColl is orders of magnitude faster in schedule generation time.
@ Quality: ForestColl's schedules always achieve theoretically optimal algorithmic bandwidth.
@ Easy to Use: ForestColl requires no parameter sweep.

—e— ForestColl —e— TACCL(c=2) —e— TACCL(c=4) —o— TE-CCL(c=2)
—e— TACCL(c=1) —e— TACCL(c=3) —e— TE-CCL(c=1)
NMQIA A100 Topology AMD MI250 Topology
= 104{% ——
e a
£ 10747 102
1024 / .
2
2 104 10
@ 100 10!
5 |]
O 101 { o] 10°
- 64 128 256 512 1024 32 64 128 256 512 1024
8
> 300- 300
Qo
=l
< 200- 200
= —o—o
S
21004 100
[
]
£ 0 T :

0 T T T u
32 64 128 256 512 1024 32 64 128 256 512 1024
N GPUs

ForestColl

Discussion

In-Network Collective Communications
o Tree representation is compatible with in-network reduce/multicast.

o NVLink SHARP simplifies intra-box reduce/multicast for ForestColl.

Drawbacks
o ForestColl prioritizes throughput over latency.

o Large data transfers are more performance-critical for LLM training.
o CCLs support switching to low-latency algorithms based on data size at runtime.

@ ForestColl has high implementation complexity.

e Ongoing Work: Transition from MSCCL (domain-specific language) to MSCCL++
(CUDA kernel implementation).

ForestColl 15 /24

ForestColl is a schedule generation algorithm for collective communications that
@ provides provably optimal schedule;
@ works on any network topology (direct-connect or switch topology);
@ runs in strongly polynomial time (scalable to large number of nodes);

@ outperforms state-of-the-art solutions in collective communication performance, ML
training, and schedule generation speed.

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl

ForestColl 16 /24

https://arxiv.org/abs/2402.06787
https://github.com/liangyuRain/ForestColl

Switch Topology

In switch topology, the vertex set consists of compute nodes and switch nodes.
@ Problem: allgather is no longer defined by spanning out-trees.

o Non-Spanning: unnecessary to broadcast data to every switch node.
o Non-Tree: switch may not be able to multicast.

@ Solution: convert switch topology into a logical topology without switches.

o] [o]] e] (=]] =

‘ Switch ‘ Switch ‘ ‘ Switch ‘
T T

VAVAN
o]

ForestColl 17 /24

Edge Splitting

@ Previous work proposed ways such as unwinding a switch into a ring.

o Edge Splitting: for each switch node w, iteratively choose edges (u, w), (w, t) and
replace them by (u, t) without sacrificing connectivity.

o Originally used to prove connectivity properties of Eulerian graph. (Jackson, 1988;
Frank, 1988; Bang-Jensen et al., 1995)

o Now to remove switch nodes without compromising allgather performance.

Cut Bandwidth: 4b b 4b

ForestColl 18 /24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule
? ?

Time Cost: 0

ForestColl 19/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

Data

n

Time Cost: 1

ForestColl 19/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

Data

Time Cost: 1

()——)
H

ForestColl 19/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

?

H a

Time Cost: 2

ForestColl 19/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

? Data
e o a

Time Cost: 2

ForestColl 19/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

1
Data 2
]

e oo a

Time Cost: 2 Time Cost: 0

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule
Data a
<f O
1]
Y

e Data b

Time Cost: 2 Time Cost: 1/3

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

=

Data

Time Cost: 2 Time Cost: 1/3

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

Data

Time Cost: 2 Time Cost: 2/3

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule
Data a
Q

e Data

o
HH

Data Data

Time Cost: 2 Time Cost: 3/3

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

H

Data

= =
Data Data

Time Cost: 2 Time Cost: 4/3

ForestColl 20/24

Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

=

1
Data 2
3

Data Data

Time Cost: 2 Time Cost: 4/3

ForestColl 20/24

Chunk Size

o ForestColl schedule assumes that data is transmitted as flows along the trees rather
than through discrete send/recv steps.

@ Ideally, chunk size should be as small as possible to enhance bandwidth utilization;
however, send/recv has overhead in practice.

Overhead- small large Pipeline bubble,
dominated Chunk Size Idle links

ForestColl 21/24

Chunk Size Experiment

ForestColl Schedule Performance with Default NCCL_BUFFSIZE
Allreduce, 2 nodes, 32 MI250 gpus, Simple Protocol

1.6

1.4 1
3

:

SIg 121
3[® \
Q |~
b 8 B € e s N e ————p
g <
“1 0.8

0.6

0.4 1

103 104 10° 10° 107 108 10° 1010
Data Size (byte)

ForestColl 22/24

Chunk Size Experiment

ForestColl Schedule Performance with Different NCCL_BUFFSIZE
Allreduce, 2 nodes, 32 MI250 gpus, Simple Protocol

=
N
L

ForestColl algbw
RCCL algbw
=
o
T
|
\
|
|
|
|
|
]
|
|
|
|
|
|
|
|
1
|
|
|
]
|
|
1
|
|
|
|
|
|
|
1
|

o
o
)

—— 256KB —— 4MB
——

512KB

e
o
!

o
IS
L

103 104 10° 10° 107 108 10° 1010
Data Size (byte)

ForestColl 23 /24

The End

Thank you

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl

ForestColl 24 /24

https://arxiv.org/abs/2402.06787
https://github.com/liangyuRain/ForestColl

