
ForestColl: Efficient Collective Communications on Heterogeneous
Network Fabrics

Presented by Liangyu Zhao

University of Washington, Microsoft Research

ForestColl 1 / 24

Bottom Line Up Front

Problem Statement:
Network topologies of ML hardware platforms are highly diverse and heterogeneous.
Existing communication libraries cannot fully unlock their performance potential.

ForestColl: a high-performance solution for collective communications on any
network topology.

Collective Communication: up to 3x faster than vendor-provided libraries.
Improved Training Efficiency: 20% speedup in large language model (LLM) training.
Schedule Generation: orders of magnitude (>104x) faster than previous methods.

ForestColl 2 / 24

Collective Communication

Originally a topic in HPC, it is now extensively used for gradient, parameter, and
activation synchronization in distributed ML training and inferencing.

Allgather is a collective where every node/GPU broadcasts a distinct shard of data.
reduce-scatter = reversed allgather
allreduce = reduce-scatter + allgather

a, b, c × a b c = a b c
Allgather

a, b, c

a b c ×
a

b

c

=
a

Allreduce
a, b, c

Reduce-Scatter
a b c

ForestColl 3 / 24

Challenges

We aim to derive efficient communication schedules for any given network topology.

Diversity & Heterogeneity: today’s ML network topologies are highly diverse
across hardware platforms and heterogeneous within individual networks.

Scalability: optimizing aggregation and multicast traffic requires strict data
dependency, often resulting in NP-hard discrete optimization.

InfiniBand Switch Fabric

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

16GB/s

50GB/s

Figure: AMD MI250 Box Topology

InfiniBand Switch Fabric

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

300GB/s

25GB/s

Figure: NVIDIA DGX A100 Box Topology

of nodes 4 9 16 25 36

SCCL [PPoPP ’21] 0.61s 1.00s 60s 3286s >104s
TACCL [NSDI ’23] 0.45s 67.8s 1801s 1802s n/a

Table: Generation Time on 2D Torus (n×n)

ForestColl 4 / 24

ForestColl

ForestColl: construct spanning trees (forest,) with k trees rooted at each node/GPU.

In allgather, every tree simultaneously broadcasts 1/k of the data from its root.

Performance: the trees achieve mathematically minimum overlap/congestion.

Scalability: computation is in strongly polynomial time.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Figure: 2-Box AMD MI250

ForestColl 5 / 24

Previous Work

SCCL
[PPoPP ’21]

TACCL
[NSDI ’23]

BFB
[NSDI ’25]

Blink
[MLSys ’20]

TE-CCL
[SIGCOMM ’24]

ForestColl

Switch-based Network × ✓ × × ✓ ✓
Optimal Schedule ✓ × × × × ✓
Scalable Runtime × × ✓ ✓ × ✓

Previous schedule generation methods either

focus on switchless direct-connect networks only;

lack theoretical performance guarantees for generated schedules;

rely on NP-hard optimization methods.

ForestColl 6 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:

M

B
·N − 1

N
=

M

N︸︷︷︸
shard size

· (N − 1)︸ ︷︷ ︸
of shards

/ B︸︷︷︸
node bandwidth

What if the throughput is not bounded by the
bandwidth of a single node?

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:

M

B
·N − 1

N
=

M

N︸︷︷︸
shard size

· (N − 1)︸ ︷︷ ︸
of shards

/ B︸︷︷︸
node bandwidth

What if the throughput is not bounded by the
bandwidth of a single node?

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:

M

B
·N − 1

N
=

M

N︸︷︷︸
shard size

· (N − 1)︸ ︷︷ ︸
of shards

/ B︸︷︷︸
node bandwidth

What if the throughput is not bounded by the
bandwidth of a single node?

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Consider an arbitrary network cut S .

Cut S implies an allgather time lower bound:

min data exiting S

available bandwidth
=

shard size × num of GPUs in S

exiting bandwidth of S

The optimal allgather throughput is
determined by a bottleneck cut S∗, where

shard size × num of GPUs in S∗

exiting bandwidth of S∗

is maximized across all possible network cuts.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Consider an arbitrary network cut S .

Cut S implies an allgather time lower bound:

min data exiting S

available bandwidth
=

shard size × num of GPUs in S

exiting bandwidth of S

The optimal allgather throughput is
determined by a bottleneck cut S∗, where

shard size × num of GPUs in S∗

exiting bandwidth of S∗

is maximized across all possible network cuts.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Consider an arbitrary network cut S .

Cut S implies an allgather time lower bound:

min data exiting S

available bandwidth
=

shard size × num of GPUs in S

exiting bandwidth of S

The optimal allgather throughput is
determined by a bottleneck cut S∗, where

shard size × num of GPUs in S∗

exiting bandwidth of S∗

is maximized across all possible network cuts.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Consider an arbitrary network cut S .

Cut S implies an allgather time lower bound:

min data exiting S

available bandwidth
=

shard size × num of GPUs in S

exiting bandwidth of S

The optimal allgather throughput is
determined by a bottleneck cut S∗, where

shard size× num of GPUs in S∗

exiting bandwidth of S∗ =
M

N
max

S⊂V,S ̸⊇Vc

|S ∩ Vc |
B+(S)

is maximized across all possible network cuts.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

Consider an arbitrary network cut S .

Cut S implies an allgather time lower bound:

min data exiting S

available bandwidth
=

shard size × num of GPUs in S

exiting bandwidth of S

The optimal allgather throughput is
determined by a bottleneck cut S∗, where

shard size× num of GPUs in S∗

exiting bandwidth of S∗ =
M

N
max

S⊂V,S ̸⊇Vc

|S ∩ Vc |
B+(S)

is maximized across all possible network cuts.

1 The spanning trees generated by ForestColl
achieve the above optimality.

2 ForestColl can efficiently compute the above
optimality.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

S

Figure: 2-Box AMD MI250

ForestColl 7 / 24

ForestColl Optimality

NVIDIA DGX A100:

When number of boxes < 3, the ingress bandwidth of a GPU is the bottleneck.

When number of boxes ≥ 3, the ingress bandwidth of a box is the bottleneck.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: Optimality and performance bounds from different cuts of NVIDIA DGX A100 topologies

ForestColl 8 / 24

ForestColl Optimality

AMD MI250:

When number of boxes < 4, the ingress bandwidth of an OAM is the bottleneck.

When number of boxes ≥ 4, the ingress bandwidth of a box is the bottleneck.

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Figure: Optimality and performance bounds from different cuts of AMD MI250 topologies

ForestColl 9 / 24

Ring vs ForestColl

Q: Why not just use rings?

Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: NCCL Ring

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: ForestColl

ForestColl 10 / 24

Ring vs ForestColl

Q: Why not just use rings?

Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: NCCL Ring

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: ForestColl

ForestColl 10 / 24

Ring vs ForestColl

Q: Why not just use rings?

Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: NCCL Ring

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: ForestColl

ForestColl 10 / 24

Ring vs ForestColl

Q: Why not just use rings?

Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: NCCL Ring

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: ForestColl

ForestColl 10 / 24

Ring vs ForestColl

Q: Why not just use rings?

Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.

Rings often overuse inter-box bandwidth, even though data could be sent intra-box.
When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: NCCL Ring

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

GPU GPU GPU GPU GPU GPU GPU GPU

NVSwitch

InfiniBand Switch

Figure: ForestColl

ForestColl 10 / 24

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.

We use MSCCL library for schedule implementation and execution.

Implementing NCCL’s ring algorithms in MSCCL yields identical performance to
NCCL, proving that ForestColl’s speedups stem solely from scheduling optimizations.

1MB 10MB 100MB 1GB
0

100

200

Allgather

1MB 10MB 100MB 1GB
0

50

100

Allreduce

1MB 10MB 100MB 1GB
0

100

200

Reduce-Scatter
ForestColl
TACCL
NCCL Ring
NCCL Ring (MSCCL)
NCCL Tree

Data Size

Al
gb

w
(G

B/
s)

8+8 NVIDIA A100
Allgather

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 13.1 92.6 201 247 130 - - - - -
TACCL 6.67 56.4 150 213 97.3 2.0x 1.6x 1.3x 1.2x 1.5x
NCCL Ring 3.17 37.6 152 187 85.8 4.1x 2.5x 1.3x 1.3x 2.3x

Reduce-
Scatter

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 9.24 72.5 185 247 119 - - - - -
NCCL Ring 3.17 37.5 151 190 86.0 2.9x 1.9x 1.2x 1.3x 1.8x

Allreduce
Algbw (GB/s) ForestColl / Baseline

1M 16M 128M 1G Avg 1M 16M 128M 1G Avg
ForestColl 5.75 41.4 107 122 65.0 - - - - -
NCCL Tree 4.47 34.8 71.9 96.8 48.8 1.3x 1.2x 1.5x 1.3x 1.3x
NCCL Ring 1.75 20.8 78.3 95.3 44.6 3.3x 2.0x 1.4x 1.3x 2.0x
NCCL Best 4.47 34.8 78.3 96.8 50.1 1.3x 1.2x 1.4x 1.3x 1.3x

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

ForestColl 11 / 24

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.

We use MSCCL library for schedule implementation and execution.

Implementing NCCL’s ring algorithms in MSCCL yields identical performance to
NCCL, proving that ForestColl’s speedups stem solely from scheduling optimizations.

1MB 10MB 100MB 1GB
0

100

200

Allgather

1MB 10MB 100MB 1GB
0

50

100

Allreduce

1MB 10MB 100MB 1GB
0

100

200

Reduce-Scatter
ForestColl
TACCL
NCCL Ring
NCCL Ring (MSCCL)
NCCL Tree

Data Size

Al
gb

w
(G

B/
s)

8+8 NVIDIA A100
Allgather

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 13.1 92.6 201 247 130 - - - - -
TACCL 6.67 56.4 150 213 97.3 2.0x 1.6x 1.3x 1.2x 1.5x
NCCL Ring 3.17 37.6 152 187 85.8 4.1x 2.5x 1.3x 1.3x 2.3x

Reduce-
Scatter

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 9.24 72.5 185 247 119 - - - - -
NCCL Ring 3.17 37.5 151 190 86.0 2.9x 1.9x 1.2x 1.3x 1.8x

Allreduce
Algbw (GB/s) ForestColl / Baseline

1M 16M 128M 1G Avg 1M 16M 128M 1G Avg
ForestColl 5.75 41.4 107 122 65.0 - - - - -
NCCL Tree 4.47 34.8 71.9 96.8 48.8 1.3x 1.2x 1.5x 1.3x 1.3x
NCCL Ring 1.75 20.8 78.3 95.3 44.6 3.3x 2.0x 1.4x 1.3x 2.0x
NCCL Best 4.47 34.8 78.3 96.8 50.1 1.3x 1.2x 1.4x 1.3x 1.3x

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

ForestColl 11 / 24

Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.

We use MSCCL library for schedule implementation and execution.

Implementing NCCL’s ring algorithms in MSCCL yields identical performance to
NCCL, proving that ForestColl’s speedups stem solely from scheduling optimizations.

1MB 10MB 100MB 1GB
0

100

200

Allgather

1MB 10MB 100MB 1GB
0

50

100

Allreduce

1MB 10MB 100MB 1GB
0

100

200

Reduce-Scatter
ForestColl
TACCL
NCCL Ring
NCCL Ring (MSCCL)
NCCL Tree

Data Size

Al
gb

w
(G

B/
s)

8+8 NVIDIA A100
Allgather

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 13.1 92.6 201 247 130 - - - - -
TACCL 6.67 56.4 150 213 97.3 2.0x 1.6x 1.3x 1.2x 1.5x
NCCL Ring 3.17 37.6 152 187 85.8 4.1x 2.5x 1.3x 1.3x 2.3x

Reduce-
Scatter

Algbw (GB/s) ForestColl / Baseline
1M 16M 128M 1G Avg 1M 16M 128M 1G Avg

ForestColl 9.24 72.5 185 247 119 - - - - -
NCCL Ring 3.17 37.5 151 190 86.0 2.9x 1.9x 1.2x 1.3x 1.8x

Allreduce
Algbw (GB/s) ForestColl / Baseline

1M 16M 128M 1G Avg 1M 16M 128M 1G Avg
ForestColl 5.75 41.4 107 122 65.0 - - - - -
NCCL Tree 4.47 34.8 71.9 96.8 48.8 1.3x 1.2x 1.5x 1.3x 1.3x
NCCL Ring 1.75 20.8 78.3 95.3 44.6 3.3x 2.0x 1.4x 1.3x 2.0x
NCCL Best 4.47 34.8 78.3 96.8 50.1 1.3x 1.2x 1.4x 1.3x 1.3x

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.

ForestColl 11 / 24

Collective Operation Evaluation

Comparison against RCCL on 2x AMD MI250 boxes:

16+16 Setting: ForestColl is, on average, 91%, 87%, and 15% faster in allgather,
reduce-scatter, and allreduce.

8+8 Setting (half of the GPUs per node): ForestColl is, on average, 2.98x, 2.86x, and
1.40x faster in allgather, reduce-scatter, and allreduce.

1MB 10MB 100MB 1GB
0

50

100

150

16+16 AMD MI250

1MB 10MB 100MB 1GB
0

50

100

8+8 AMD MI250

1MB 10MB 100MB 1GB
0

50

100

150

Al
gb

w
(G

B/
s)

1MB 10MB 100MB 1GB
0

50

100

1MB 10MB 100MB 1GB
0

25

50

75

1MB 10MB 100MB 1GB
0

20

40

60

Al
lg

at
he

r
Re

du
ce

-S
ca

tte
r

Al
lre

du
ce

Data Size

ForestColl
TACCL

Blink+Switch
RCCL Ring

RCCL Tree

InfiniBand Switch

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Figure: 8+8 Topology

ForestColl 12 / 24

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

Larger models are more communication-bound, leading to greater improvements
with ForestColl.

Forced to use smaller batch sizes to avoid GPU out of memory.
Less compute-communication overlap due to GPU resource contention (e.g., SM,
memory) between compute and communication kernels.

2B 9B 27B
0

1

2

Ite
ra

tio
n

Ti
m

e
(s

)

nccl

nccl

nccl

FC

FC

FC

Gemma-2

7B 13B 70B
0

2

4

nccl nccl

nccl

FC FC

FC

Llama-2

8B 70B 119B*
0

2

4

6

8

nccl

nccl

nccl

FC

FC

FC

Llama-3

Model Size

Compute Non-Overlapped Communication

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl 13 / 24

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

Larger models are more communication-bound, leading to greater improvements
with ForestColl.

Forced to use smaller batch sizes to avoid GPU out of memory.
Less compute-communication overlap due to GPU resource contention (e.g., SM,
memory) between compute and communication kernels.

2B 9B 27B
0

1

2

Ite
ra

tio
n

Ti
m

e
(s

)

nccl

nccl

nccl

FC

FC

FC

Gemma-2

7B 13B 70B
0

2

4

nccl nccl

nccl

FC FC

FC

Llama-2

8B 70B 119B*
0

2

4

6

8

nccl

nccl

nccl

FC

FC

FC

Llama-3

Model Size

Compute Non-Overlapped Communication

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl 13 / 24

ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

Larger models are more communication-bound, leading to greater improvements
with ForestColl.

Forced to use smaller batch sizes to avoid GPU out of memory.
Less compute-communication overlap due to GPU resource contention (e.g., SM,
memory) between compute and communication kernels.

2B 9B 27B
0

1

2

Ite
ra

tio
n

Ti
m

e
(s

)

nccl

nccl

nccl

FC

FC

FC

Gemma-2

7B 13B 70B
0

2

4

nccl nccl

nccl

FC FC

FC

Llama-2

8B 70B 119B*
0

2

4

6

8

nccl

nccl

nccl

FC

FC

FC

Llama-3

Model Size

Compute Non-Overlapped Communication

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.

ForestColl 13 / 24

Schedule Generation Evaluation

Comparison against TACCL [NSDI ’23] and TE-CCL [SIGCOMM ’24]:

Speed: ForestColl is orders of magnitude faster in schedule generation time.

Quality: ForestColl’s schedules always achieve theoretically optimal algorithmic bandwidth.

Easy to Use: ForestColl requires no parameter sweep.

16 32 64 128 256 512 1024
10 1

100
101

102

103
104

Ge
ne

ra
tio

n
Ti

m
e

(s
)

NVIDIA A100 Topology

32 64 128 256 512 1024
100

101

102

103

104

AMD MI250 Topology

16 32 64 128 256 512 1024
0

100

200

300

Th
eo

re
tic

al
 A

lg
bw

 (G
B/

s)

32 64 128 256 512 1024
0

100

200

300

N GPUs

ForestColl
TACCL(c=1)

TACCL(c=2)
TACCL(c=3)

TACCL(c=4)
TE-CCL(c=1)

TE-CCL(c=2)

ForestColl 14 / 24

Schedule Generation Evaluation

Comparison against TACCL [NSDI ’23] and TE-CCL [SIGCOMM ’24]:

Speed: ForestColl is orders of magnitude faster in schedule generation time.

Quality: ForestColl’s schedules always achieve theoretically optimal algorithmic bandwidth.

Easy to Use: ForestColl requires no parameter sweep.

16 32 64 128 256 512 1024
10 1

100
101

102

103
104

Ge
ne

ra
tio

n
Ti

m
e

(s
)

NVIDIA A100 Topology

32 64 128 256 512 1024
100

101

102

103

104

AMD MI250 Topology

16 32 64 128 256 512 1024
0

100

200

300

Th
eo

re
tic

al
 A

lg
bw

 (G
B/

s)

32 64 128 256 512 1024
0

100

200

300

N GPUs

ForestColl
TACCL(c=1)

TACCL(c=2)
TACCL(c=3)

TACCL(c=4)
TE-CCL(c=1)

TE-CCL(c=2)

ForestColl 14 / 24

Discussion

In-Network Collective Communications

Tree representation is compatible with in-network reduce/multicast.

NVLink SHARP simplifies intra-box reduce/multicast for ForestColl.

Drawbacks

ForestColl prioritizes throughput over latency.
Large data transfers are more performance-critical for LLM training.
CCLs support switching to low-latency algorithms based on data size at runtime.

ForestColl has high implementation complexity.
Ongoing Work: Transition from MSCCL (domain-specific language) to MSCCL++
(CUDA kernel implementation).

ForestColl 15 / 24

Summary

ForestColl is a schedule generation algorithm for collective communications that

provides provably optimal schedule;

works on any network topology (direct-connect or switch topology);

runs in strongly polynomial time (scalable to large number of nodes);

outperforms state-of-the-art solutions in collective communication performance, ML
training, and schedule generation speed.

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl

ForestColl 16 / 24

https://arxiv.org/abs/2402.06787
https://github.com/liangyuRain/ForestColl

Switch Topology

In switch topology, the vertex set consists of compute nodes and switch nodes.

Problem: allgather is no longer defined by spanning out-trees.
Non-Spanning: unnecessary to broadcast data to every switch node.
Non-Tree: switch may not be able to multicast.

Solution: convert switch topology into a logical topology without switches.

GPU GPU GPU GPU

Switch

10b

GPU GPU GPU GPU

Switch

10b

Switch

b

b

GPU GPU GPU GPU

Switch

GPU GPU GPU GPU

Switch

Switch

GPU GPU GPU GPU

Switch

GPU GPU GPU GPU

Switch

Switch

ForestColl 17 / 24

Edge Splitting

Previous work proposed ways such as unwinding a switch into a ring.

Edge Splitting: for each switch node w , iteratively choose edges (u,w), (w , t) and
replace them by (u, t) without sacrificing connectivity.

Originally used to prove connectivity properties of Eulerian graph. (Jackson, 1988;
Frank, 1988; Bang-Jensen et al., 1995)
Now to remove switch nodes without compromising allgather performance.

GPU GPU GPU GPU

Switch

10b

GPU GPU GPU GPU

Switch

10b

Switch

b

S∗

Cut Bandwidth: 4b

GPU GPU GPU GPU

10b

GPU GPU GPU GPU

10b

b

S∗

b

GPU GPU GPU GPU

10b

GPU GPU GPU GPU

10b

b

S∗

4b

ForestColl 18 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Time Cost: 0

Pipeline Schedule

a

b

c d

ForestColl 19 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

Time Cost: 1

Pipeline Schedule

a

b

c d

ForestColl 19 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

Time Cost: 1

Pipeline Schedule

a

b

c d

ForestColl 19 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

ForestColl 19 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

ForestColl 19 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

Time Cost: 0

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

Time Cost: 1/3

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

Time Cost: 1/3

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

2

11

Time Cost: 2/3

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

11

2

3

22

Time Cost: 3/3

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

11

2

22

3

33

Time Cost: 4/3

ForestColl 20 / 24

Pipeline Schedule

Non-Pipeline Schedule

a

b

c d

Data

Data

DataData

Time Cost: 2

Pipeline Schedule

a

b

c d

1
2
3

1

11

2

22

3

33

Time Cost: 4/3

ForestColl 20 / 24

Chunk Size

ForestColl schedule assumes that data is transmitted as flows along the trees rather
than through discrete send/recv steps.

Ideally, chunk size should be as small as possible to enhance bandwidth utilization;
however, send/recv has overhead in practice.

small large

Chunk Size

Overhead-
dominated

Pipeline bubble,
Idle links

ForestColl 21 / 24

Chunk Size Experiment

ForestColl 22 / 24

Chunk Size Experiment

ForestColl 23 / 24

The End

Thank you

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl

ForestColl 24 / 24

https://arxiv.org/abs/2402.06787
https://github.com/liangyuRain/ForestColl

