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Bottom Line Up Front

o Problem Statement:

o Network topologies of ML hardware platforms are highly diverse and heterogeneous.
o Existing communication libraries cannot fully unlock their performance potential.

@ ForestColl: a high-performance solution for collective communications on any
network topology.
o Collective Communication: up to 3x faster than vendor-provided libraries.
o Improved Training Efficiency: 20% speedup in large language model (LLM) training.
o Schedule Generation: orders of magnitude (>10%x) faster than previous methods.
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Collective Communication

@ Originally a topic in HPC, it is now extensively used for gradient, parameter, and
activation synchronization in distributed ML training and inferencing.
o Allgather is a collective where every node/GPU broadcasts a distinct shard of data.

o reduce-scatter = reversed allgather
o allreduce = reduce-scatter + allgather

Allgather
a, b, c X a|b|c = a|b|c —_— a, b, c
a
Allreduce
a b c X b = N E——— a b7 c
@

Reduce-Scatter
—_—
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Challenges

We aim to derive efficient communication schedules for any given network topology.
o Diversity & Heterogeneity: today's ML network topologies are highly diverse
across hardware platforms and heterogeneous within individual networks.

@ Scalability: optimizing aggregation and multicast traffic requires strict data
dependency, often resulting in NP-hard discrete optimization.
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ForestColl

ForestColl: construct spanning trees (forest®) with k trees rooted at each node/GPU.
o In allgather, every tree simultaneously broadcasts 1/k of the data from its root.
o Performance: the trees achieve mathematically minimum overlap/congestion.

@ Scalability: computation is in strongly polynomial time.
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SCCL TACCL BFB Blink TE-CCL
[PPoPP 21] | [NSDI'23] | [NSDI25] | [MLSys'20] | [siccomm 2¢) | ForestColl
Switch-based Network X v X X v v
Optimal Schedule v X X X X v
Scalable Runtime X X v v X v

Previous schedule generation methods either

@ focus on switchless direct-connect networks only;

@ lack theoretical performance guarantees for generated schedules;

o rely on NP-hard optimization methods.
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ForestColl Optimality

Q: What is the optimal allgather throughput given a i i il
network topology?
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ForestColl Optimality
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o Previous works often look at the amount of
data received vs bandwidth at a single node.
The allgather time lower bound is:
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ForestColl Optimality
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ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

o Consider an arbitrary network cut S.
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ForestColl Optimality

Q: What is the optimal allgather throughput given a s S
network topology? 5 GPu il
o Consider an arbitrary network cut S. G
o Cut S implies an allgather time lower bound: S
min data exiting S shard size X num of GPUs in §
available bandwidth exiting bandwidth of S [0y “
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ForestColl Optimality
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ForestColl Optimality
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ForestColl Optimality

Q: What is the optimal allgather throughput given a
network topology?

o Consider an arbitrary network cut S.

o Cut S implies an allgather time lower bound:
min data exiting S shard size X num of GPUs in §

available bandwidth exiting bandwidth of S
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achieve the above optimality.
@ ForestColl can efficiently compute the above Figure: 2-Box AMD MI250
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ForestColl Optimality

NVIDIA DGX A100:
@ When number of boxes < 3, the ingress bandwidth of a GPU is the bottleneck.
@ When number of boxes > 3, the ingress bandwidth of a box is the bottleneck.
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Figure: Optimality and performance bounds from different cuts of NVIDIA DGX A100 topologies
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ForestColl Optimality

AMD MI250:
@ When number of boxes < 4, the ingress bandwidth of an OAM is the bottleneck.
@ When number of boxes > 4, the ingress bandwidth of a box is the bottleneck.
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Ring vs ForestColl

Q: Why not just use rings?
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Ring vs ForestColl

Q: Why not just use rings?

o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
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Ring vs ForestColl

Q: Why not just use rings?
o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.
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Ring vs ForestColl

Q: Why not just use rings?
o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.
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Ring vs ForestColl

Q: Why not just use rings?

o Bottleneck: inter-box bandwidth is significantly less than intra-box bandwidth.
@ Rings often overuse inter-box bandwidth, even though data could be sent intra-box.

o When all GPUs broadcast simultaneously, ring allgather generates nearly 2x amount of
inter-box traffic compared to ForestColl.
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Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

8+8 NVIDIA A100 Allreduce

Allgather

Algather Algbw (GB/s) ForestColl / Baseline
200 100 & TV [ 16M | 128M | 1G | Avg | 1M [ 16M | 128M | 1G | Avg
ForestColl || 13.1 | 926 | 201 | 247 | 130 || - B B R
TACCL | 6.67 | 564 | 150 | 213 | 073 || 20x | 16x | 13x | 12x | 15x
100 50 NCCL Ring || 3.17 | 37.6 | 152 | 187 | 858 || 4.1x | 25x | 1.3x | 13x | 2.3x
Reduce- Algbw (GB/s) ForestColl / Baseline
5 Scatter | TM [ 16M | 128M | 1G | Avg || IM | 16M | 128M | 1G [ Avg
g 0¥ . v ~ 017 v v r ForestColl || 9.24 | 725 | 185 | 247 | 119 - - - -1 -
g e R“’g"B Sw‘iz‘ﬁ 168  IMB  10MB  100MB  1GB | 'NCCLRing || 3.17 | 37.5 | 151 | 100 | 860 || 2.0x | 19x | 1.2x | 1.3x | 1.8x
S educe-scatter Allreduce Algbw (GB/s) ForestColl / Baseline
< —— ForestColl TV [ 16M | 128M | 1G [ Avg | IM | 16M [ 128M [ 1G [ Avg
200 —— TACCL ForestColl || 5.75 | 41.4 | 107 | 122 | 65.0 || - B B 5 B
—e— NCCLRing NCCL Tree || 4.47 | 348 | 719 | 06.8 | 488 || 13x | 12x | Tb5x | 13x | 1.3x
100 —e— NCCL Ring (MSCCL) NCCL Ring || 1.75 | 20.8 | 78.3 | 05.3 | 446 || 3.3x | 2.0x | L.ax | 13x | 2.0x
—— NCCL Tree NCCL Best || 447 | 348 | 783 | 96:8 | 501 | 1.3x | 12x | L1.Ax | 13x | 13x
)

1mMB 10MB 100MB 1GB
Data Size

Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.
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Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:

@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.

@ At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.
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Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.
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Collective Operation Evaluation

Comparison against NCCL on 2x NVIDIA DGX A100 boxes:
@ From 1MB to 1GB data sizes, ForestColl is, on average, 130%, 85%, and 27% faster than
NCCL in allgather, reduce-scatter, and allreduce.
@ At 1GB data size, ForestColl is 32%, 30%, and 26% faster than NCCL in allgather,
reduce-scatter, and allreduce.
@ We use MSCCL library for schedule implementation and execution.
o Implementing NCCL's ring algorithms in MSCCL yields identical performance to
NCCL, proving that ForestColl's speedups stem solely from scheduling optimizations.
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Figure: ForestColl vs NCCL on 2-box NVIDIA DGX A100.
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Collective Operation Evaluation

Comparison against RCCL on 2x AMD MI250 boxes:
@ 16416 Setting: ForestColl is, on average, 91%, 87%, and 15% faster in allgather,
reduce-scatter, and allreduce.
@ 848 Setting (half of the GPUs per node): ForestColl is, on average, 2.98x, 2.86x, and
1.40x faster in allgather, reduce-scatter, and allreduce.
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ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

B Compute WM Non-Overlapped Communication
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i 138 70B 8B 70B  119B*
Model Size

Llama-3-119B* is our reduced version of Llama-3-405B, with fewer hidden layers.
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ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.

o Larger models are more communication-bound, leading to greater improvements
with ForestColl.
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ML Training Evaluation

In PyTorch FSDP training of state-of-the-art LLMs across 2x DGX A100,

@ The communication speedup offered by ForestColl reduces training iteration times
by 14% for Gemma 27B and 20% for Llama 70B and 119B* compared to NCCL.
o Larger models are more communication-bound, leading to greater improvements
with ForestColl.
o Forced to use smaller batch sizes to avoid GPU out of memory.
o Less compute-communication overlap due to GPU resource contention (e.g., SM,
memory) between compute and communication kernels.
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Schedule Generation Evaluation

Comparison against TACCL [NSDI '23] and TE-CCL [SIGCOMM '24]:

@ Speed: ForestColl is orders of magnitude faster in schedule generation time.

@ Quality: ForestColl's schedules always achieve theoretically optimal algorithmic bandwidth.

@ Easy to Use: ForestColl requires no parameter sweep.
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Schedule Generation Evaluation

Comparison against TACCL [NSDI '23] and TE-CCL [SIGCOMM '24]:
@ Speed: ForestColl is orders of magnitude faster in schedule generation time.
@ Quality: ForestColl's schedules always achieve theoretically optimal algorithmic bandwidth.
@ Easy to Use: ForestColl requires no parameter sweep.
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Discussion

In-Network Collective Communications
o Tree representation is compatible with in-network reduce/multicast.

o NVLink SHARP simplifies intra-box reduce/multicast for ForestColl.

Drawbacks
o ForestColl prioritizes throughput over latency.

o Large data transfers are more performance-critical for LLM training.
o CCLs support switching to low-latency algorithms based on data size at runtime.

@ ForestColl has high implementation complexity.

e Ongoing Work: Transition from MSCCL (domain-specific language) to MSCCL++
(CUDA kernel implementation).
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ForestColl is a schedule generation algorithm for collective communications that
@ provides provably optimal schedule;
@ works on any network topology (direct-connect or switch topology);
@ runs in strongly polynomial time (scalable to large number of nodes);

@ outperforms state-of-the-art solutions in collective communication performance, ML
training, and schedule generation speed.

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl
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Switch Topology

In switch topology, the vertex set consists of compute nodes and switch nodes.
@ Problem: allgather is no longer defined by spanning out-trees.

o Non-Spanning: unnecessary to broadcast data to every switch node.
o Non-Tree: switch may not be able to multicast.

@ Solution: convert switch topology into a logical topology without switches.

o] [o] ] e ] (=] ] =

‘ Switch ‘ Switch ‘ ‘ Switch ‘
T T

VAVAN
o]
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Edge Splitting

@ Previous work proposed ways such as unwinding a switch into a ring.

o Edge Splitting: for each switch node w, iteratively choose edges (u, w), (w, t) and
replace them by (u, t) without sacrificing connectivity.

o Originally used to prove connectivity properties of Eulerian graph. (Jackson, 1988;
Frank, 1988; Bang-Jensen et al., 1995)

o Now to remove switch nodes without compromising allgather performance.

Cut Bandwidth: 4b b 4b
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Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule
? ?

Time Cost: 0

ForestColl 19/24



Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

Data

n

Time Cost: 1

ForestColl 19/24



Pipeline Schedule

Non-Pipeline Schedule Pipeline Schedule

Data

Data

Time Cost: 1

()——)
H

ForestColl 19/24



Pipeline Schedule
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Chunk Size

o ForestColl schedule assumes that data is transmitted as flows along the trees rather
than through discrete send/recv steps.

@ Ideally, chunk size should be as small as possible to enhance bandwidth utilization;
however, send/recv has overhead in practice.

Overhead- small large Pipeline bubble,
dominated Chunk Size Idle links
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Chunk Size Experiment

ForestColl Schedule Performance with Default NCCL_BUFFSIZE
Allreduce, 2 nodes, 32 MI250 gpus, Simple Protocol
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Chunk Size Experiment

ForestColl Schedule Performance with Different NCCL_BUFFSIZE
Allreduce, 2 nodes, 32 MI250 gpus, Simple Protocol
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The End

Thank you

Paper: https://arxiv.org/abs/2402.06787
GitHub: https://github.com/liangyuRain/ForestColl
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