Efficient Direct-Connect Topologies for Collective Communications

Liangyu Zhao¹ Siddharth Pal² Tapan Chugh¹ Weiyang Wang³ Jason Fantl² Prithwish Basu² Joud Khoury² Arvind Krishnamurthy¹

¹University of Washington ²RTX BBN Technologies ³MIT CSAIL

ACE Theme 3 To be presented at NSDI '25

- **Collective Communication**: a set of communication operations among a group of nodes in a parallel computing system, serving as building blocks for distributed computing.
 - e.g. broadcast, reduce, allgather, reduce-scatter, allreduce, all-to-all, etc.
- Originally a topic in HPC, it is now extensively used for gradient, parameter, and activation synchronization in distributed ML training and inferencing.

Allgather

Collective Communication

- We focus on accelerating **allgather**, **reduce-scatter**, and **allreduce**, three widely used collective operations in distributed ML.
- Focus on Allgather: allgather can be transformed into reduce-scatter and allreduce.
 - reduce-scatter = reversed allgather
 - allreduce = reduce-scatter + allgather

Reduce-Scatter

An emerging approach is to use **optical circuit network**:

- Higher bandwidth at lower capital expenditure and energy cost.
- The network can be configured into any **direct-connect** topology.
- Exhibit high reconfiguration latency, requiring relatively fixed topologies.

The topology of an optical circuit network can be modeled as a **direct-connect network**:

- Nodes are **directly connected** without the use of packet switches. Pairs of unconnected nodes cannot communicate directly.
- The network can be unidirectional (directed graph) or bidirectional (undirected graph).
- The topology is typically *d*-regular and homogeneous.
- α - β cost model: the time cost of sending a size-M message over a link is $\alpha + M/b$.

• Allreduce-Type Collectives (e.g., allgather, reduce-scatter, allreduce)

- All-to-All Communication
 - Because of bandwidth tax, point-to-point flows should be as short as possible.
 - All-to-all throughput also requires low-diameter topology.
- Workloads may require both low diameter and load-balanced allreduce.
 - e.g., expert-parallel training involving both allreduce and all-to-all.

Ideal Topology: low-diameter topology with load-balanced collective communication.

Traditional HPC Topologies

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

- Traditional HPC topologies are limited to a few ring-based graphs.
 - e.g., ring, torus, multi-ring.
- Pros: load-balanced collective, high-throughput allreduce-type collective operations.
- **Cons:** high diameter, detrimental for all-to-all throughput and latency-sensitive small-data allreduce.

arXiv:2202.03356 (NSDI '25)

- Low-diameter expander graphs from graph theory.
 - e.g., de Bruijn graph, Kautz graph.
- Pros: low diameter, ideal for all-to-all throughput and small-data allreduce.
- Cons: complex structure, lack of load-balanced allreduce-type schedules.

(a) de Bruijn Graph

Topology Type	Small-Data Allreduce Latensy-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional HPC Topologies	—	\checkmark	—
Low-Diameter Expander Graphs	\checkmark	—	\checkmark

Topology Type	Small-Data Allreduce Latensy-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput	
Traditional HPC Topologies	×	\checkmark	×	
Low-Diameter Expander Graphs	\checkmark	—	\checkmark	

• Latency and all-to-all throughput are bounded by topology diameter.

Topology Type	Small-Data Allreduce Latensy-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput	
Traditional HPC Topologies	×	\checkmark	×	
Low-Diameter Expander Graphs	\checkmark	???	\checkmark	

- Latency and all-to-all throughput are bounded by topology diameter.
- Question: Can we have load-balanced allreduce schedules on low-diameter topologies?

Challenge: Optimizing communication schedule can be computationally intractable.

- **Data Dependency:** unlike point-to-point traffic, flow conservation is not sufficient to maintain data dependency in collective communication due to multicast/aggregation.
- Earlier works track data dependency in chunks, leading to NP-hard discrete optimization.
 - SCCL [PPoPP '21] uses satisfiability modulo theories (SMT).
 - TACCL [NSDI '23], TE-CCL [SIGCOMM '24] use mixed integer linear program (MILP).

# of nodes	4	8	16	32	64
SCCL	0.59s	0.86s	21.4s	$> 10^4 s$	$> 10^4 s$
TACCL	0.50s	7.39s	1801s	1802s	n/a

Table: Generation Time on Hypercube

# of nodes	4	9	16	25	36
SCCL	0.61s	1.00s	60s	3286s	$> 10^4 s$
TACCL	0.45s	67.8s	1801s	1802s	n/a

Table: Generation Time on 2D Torus $(n \times n)$

- Expansion Techniques: expand small-scale optimized topologies and schedules into large-scale ones.
 - Avoid intractable direct construction of large-scale topologies and schedules.
- Schedule Generation: generate optimal Breadth-First-Broadcast (BFB) schedule on large topologies.
 - Optimizing BFB schedule can be done with polynomial-time linear program.

Given a base topology and its associated communication schedule,

- We have graph transformations to expand the **base topology** into larger ones.
- The **base schedule** is also expanded to match the expanded topology.
- The expansion involves simple mapping of nodes, edges, and data send/recv.
- The sacrifice in overall performance is mathematically bounded during the process.

Line Graph Expansion:

Degree Expansion:

Line Graph Expansion

We borrow the concept of **line graph** from graph theory:

- Edge (u, v) in base graph $G \iff$ Node uv in the line graph L(G).
- For every uv, vw node pair in the line graph, there is an edge (uv, vw).
- $N_{L(G)} = N_G \cdot \deg G$; $\deg L(G) = \deg G$.

(b) $L(K_{2,2})$ (N = 8, d = 2)

ac

cb

Line Graph Expansion

The schedule can be mapped from base topology to the expanded topology:

- Any (shortest) path $w_0 \rightarrow w_1 \rightarrow \cdots \rightarrow w_n$ in $K_{2,2}$ can be mapped to a (shortest) path $w_{-1}w_0 \rightarrow w_0w_1 \rightarrow \cdots \rightarrow w_{n-1}w_n \rightarrow w_nw_{n+1}$ in $L(K_{2,2})$, for any $w_{-1}w_0 \neq w_nw_{n+1}$.
- Data going from ca to bd in $L(K_{2,2})$ can follow the corresponding path of a to b in $K_{2,2}$.

- Line graph expansion can be **applied repeatedly** to scale topology and schedule indefinitely.
 - Node degree is preserved, friendly to hardware constraints.
- The performance sacrifice is limited.
 - If the base is throughput-optimal with N nodes, then the expanded schedule is **at most** $\frac{1}{(d-1)N}$ away from throughput optimality.
 - Expansion preserves low-diameter property. *N* increases *d*-fold while diameter increases by 1.

- G * n makes n copies of G, and connect (a_i, b_j) for any (a, b) in G.
 - $\deg(G*n) = n \cdot \deg G$; $N_{G*n} = n \cdot N_G$.
- Degree expansion preserves throughput optimality.
 - Broadcast path in figure (a) is mapped to non-overlapping red and blue paths in (c).

(b) G * 2 (N = 8, d = 2)

(c) Broadcasts w.r.t. a_1, a_2

Cartesian Product Expansion

- From graph theory, given graphs G_1, G_2, \ldots, G_n , we can construct a Cartesian product graph $G_1 \square G_2 \square \ldots \square G_n$.
 - $N_{G_1 \square G_2 \square \dots \square G_n} = \prod_i N_{G_i}; \quad \deg(G_1 \square G_2 \square \dots \square G_n) = \sum_i \deg(G_i).$
- $G_1 \square G_2 \square ... \square G_n$ is throughput-optimal if each G_i is throughput-optimal.
 - e.g., torus with arbitrary dimensions d₁ × d₂ × ··· × d_n. Previously, only torus with equal dimensions (d₁ = d₂ = ··· = d_n) has efficient schedules.
 - Use BFB schedule generation (to be introduced later).
 - Cartesian product greatly expands the set of throughput-optimal topologies we construct.

Topology Finder

- Given a target topology size, the topology finder explores all known base topologies and potential combinations of expansion techniques.
- The resulting candidate topologies and schedules form a **Pareto-frontier**. The best one is then decided by hardware/workload specifications.
 - Pareto-frontier: low-diameter vs. load-balanced allreduce.
 - All-to-all performance is strongly related to graph diameter D(G).

Expansion Techniques	# of Nodes	Deg	Moore	BW
Line Graph Exp L ⁿ (G)	d"N	d	~	×
Degree Exp $G * n$	nN	nd	×	\checkmark
Cartesian Power $G^{\Box n}$	N ⁿ	nd	×	\checkmark
Cartesian Prod $G_1 \Box \dots \Box G_n$	$\prod_i N_i$	$\sum_{i} d_{i}$	×	\checkmark

Table: Summary of Expansion Techniques

Topology	T_L	T _B	$2(T_L+T_B)$	D(G)	All-to-All
Π _{4,1024}	5α	1.332 ^M /в	323.5us	5	409.1us
$L^{3}(C(16, \{3, 4\}))$	6α	1.020 ^M /B	291.0us	6	403.5us
$L^2(\text{Diamond}^{\square 2})$	8α	1.004 ^M /B	328.4us	8	446.6us
$L(DBJMod(2,4)^{\square 2})$	11α	1.000 ^M /B	387.8us	9	529.9us
$(\text{UniRing}(1,4)\square\text{UniRing}(1,8))^{\square 2}$	20α	0.999 <i>М/в</i>	567.6us	20	1174.4us
Baseline: 32x32 Torus	62α	0.999 <i>M/B</i>	1407.6us	32	1342.2us
Theoretical Bound	5 α	0.999 <i>M</i> / <i>B</i>	267.6us	5	382.3us

Table: Pareto-frontier for N = 1024, d = 4 with $\alpha = 10 \mu s$ and M/B = 1MB/100Gbps.

Observations:

- Expansion techniques have huge gaps in the coverage of topology sizes.
 - Given a base topology with N = 4, d = 2, line graph expansion can only generate topologies of 8, 16, 32, ... $(d^n N)$ number of nodes.
- There exist off-the-shelf low-diameter expander graphs from graph theory.

Question

Given a topology from graph theory, can we efficiently construct an efficient schedule for it?

Allgather: each node broadcasts a shard of data simultaneously.

- We perform a Breadth-First-Broadcast (BFB) from each node.
 - At time step t, from each source node, nodes at distance t 1 collectively broadcast the data shard to nodes at distance t.
- A linear program is used to balance workloads on links at each time step.
- Latency: data always follows the shortest paths, optimal for the given topology.
- Throughput: provably throughput-optimal for many types of graphs.

BFB Example

BFB Example

Nodes a and c each have a data shard to broadcast.

Broadcast data to neighbors.

Broadcast data to node *e*.

- Both *b*, *d* can provide shard *a*.
- Both *b*, *f* can provide shard *c*.

Question: How can data be sent while balancing the workload across links?

Perfect balance is achieved if

- d sends $\frac{2}{3}$ of shard a.
- f sends $\frac{2}{3}$ of shard c.
- b sends $\frac{1}{3}$ of shard a and $\frac{1}{3}$ of shard c.

Perfect balance is achieved if

- d sends $\frac{2}{3}$ of shard a.
- f sends $\frac{2}{3}$ of shard c.
- *b* sends $\frac{1}{3}$ of shard *a* and $\frac{1}{3}$ of shard *c*. Each link sends $\frac{2}{3}$ of a shard in total.

BFB Linear Program

For each node $u \in V$ and time step $t \in \{1, 2, \dots, D(G)\}$,

- Data shards from source nodes v at distance t to u should reach u at step t.
- $x_{v,(w,u),t}$ is the proportion of v's shard sent through link (w, u) at step t.
 - Only nodes w on the shortest paths from v to u can provide v's data shard; otherwise, $x_{v,(w,u),t}$ is undefined.

minimize $U_{u,t}$ Minimize the max workload averagesubject to $\sum_{v,(w,u),t}^{v} \leq U_{u,t}, \quad \forall w \in N^-(u)$ Ensure $U_{u,t}$ is the max workload $\sum_{v}^{v} x_{v,(w,u),t} = 1, \quad \forall v \in N_t^-(u)$ Ensure u receives all the data $0 \leq x_{v,(w,u),t} \leq 1.$ $\forall w, v$ minimize $U_{\mu,t}$

Minimize the max workload across links Ensure $U_{\mu,t}$ is the max workload

• Solve the linear program for each *u* and *t*.

BFB Linear Program

For each node $u \in V$ and time step $t \in \{1, 2, \dots, D(G)\}$,

- Data shards from source nodes v at distance t to u should reach u at step t.
- $x_{v,(w,u),t}$ is the proportion of v's shard sent through link (w, u) at step t.
 - Only nodes w on the shortest paths from v to u can provide v's data shard; otherwise, $x_{v,(w,u),t}$ is undefined.

minimize
$$U_{u,t}$$
Minimize the max workload across linkssubject to $\sum_{v,(w,u),t}^{v} \leq U_{u,t}, \quad \forall w \in N^-(u)$ Ensure $U_{u,t}$ is the max workload $\sum_{v}^{v} x_{v,(w,u),t} = 1, \quad \forall v \in N_t^-(u)$ Ensure u receives all the data $0 \leq x_{v,(w,u),t} \leq 1. \quad \forall w, v$

• Solve the linear program for each *u* and *t*.

Question: Why is BFB able to use a polynomial-time linear program rather than NP-hard discrete optimizations?

Answer: BFB eliminates the need to track data dependencies using discrete data chunks. What specific data are the $\frac{2}{3}$ shard sent by d and $\frac{1}{3}$ shard sent by b?

What specific data are the $\frac{2}{3}$ shard sent by *d* and $\frac{1}{3}$ shard sent by *b*?

• In BFB, they can be **any parts** of shard *a*, as long as the union is the whole shard.

- In BFB, they can be **any parts** of shard *a*, as long as the union is the whole shard.
 - \bullet e.g., $\{1,2\}$ and $\{3\}$

- In BFB, they can be **any parts** of shard *a*, as long as the union is the whole shard.
 - e.g., $\{1,2\}$ and $\{3\}$, or $\{1,3\}$ and $\{2\}$.

- In BFB, they can be **any parts** of shard *a*, as long as the union is the whole shard.
 - \bullet e.g., $\{1,2\}$ and $\{3\},$ or $\{1,3\}$ and $\{2\}.$
- Only the amount of data to be sent needs to be decided, not the specific data chunks, enabling a **continuous optimization**.

- In BFB, they can be **any parts** of shard *a*, as long as the union is the whole shard.
 - e.g., $\{1,2\}$ and $\{3\},$ or $\{1,3\}$ and $\{2\}.$
- Only the amount of data to be sent needs to be decided, not the specific data chunks, enabling a **continuous optimization**.
- BFB ensures that *b*, *d* receive the entire shard before forwarding it to *e*, a guarantee not provided by all scheduling methods.

Question: How does BFB achieve polynomial-time schedule generation?

Zhao et al. (UW, BBN, MIT)

arXiv:2202.03356 (NSDI '25)

Question: How does BFB achieve polynomial-time schedule generation?

• Finding efficient schedules starting from the whole schedule space is NP-hard.

Zhao et al. (UW, BBN, MIT)

arXiv:2202.03356 (NSDI '25)

Question: How does BFB achieve polynomial-time schedule generation?

- Finding efficient schedules starting from the whole schedule space is NP-hard.
- BFB schedules are a subset of the schedule space.

Question: How does BFB achieve polynomial-time schedule generation?

- Finding efficient schedules starting from the whole schedule space is NP-hard.
- BFB schedules are a subset of the schedule space.
- Finding efficient schedules within BFB schedule space is polynomial-time.

BFB linear program gives the optimal BFB schedule. **Question:** the optimal BFB schedule = the globally optimal schedule?

BFB linear program gives the optimal BFB schedule.

Question: the optimal BFB schedule = the globally optimal schedule?

- Case 1: the optimal BFB schedule is the globally optimal schedule.
 - **Topologies with certain symmetry properties,** e.g., torus with arbitrary dimensions, twisted torus used by TPU v4, circulant graph, distance-regular graph.
 - Cartesian product of graphs with globally optimal BFB schedules.

BFB linear program gives the optimal BFB schedule.

Question: the optimal BFB schedule = the globally optimal schedule?

- Case 2: the optimal BFB schedule is efficient but not the globally optimal schedule.
 - The optimal BFB schedule is **close to** throughput optimality, e.g., generalized Kautz Graphs.

BFB linear program gives the optimal BFB schedule.

Question: the optimal BFB schedule = the globally optimal schedule?

- Case 3: the optimal BFB schedule is not efficient at all.
 - Random topologies without any symmetry properties.
 - Throughput optimality in all cases—see follow-up work ForestColl (arXiv:2402.06787).

BFB Efficient Topologies

Throughput-optimal topologies with BFB:

• Torus with arbitrary dimensions

- Cartesian product of rings, which have globally optimal BFB schedules.
- Previous schedules are only efficient on torus with equal dimensions (e.g., $n \times n$, $n \times n \times n$)

• Twisted Torus used by Google TPU v4

• Computationally verified for at least $N \le 10^4$.

(a) 3x4 2D Torus

(b) 4x2 Twisted Torus

BFB Efficient Topologies

- Circulant Graph: throughput-optimal with BFB.
 - Can be constructed for any N and even-value d.
 - Significant improvement over ring in latency if throughput optimality is required.
 - d = 4: total-hop latency $\approx \frac{\sqrt{2N}}{2}$ instead of N 1.
- Generalized Kautz Graph: diameter is at most one hop away from Moore Bound.
 - Can be constructed for any N and d.
 - Close to throughput optimality:

BFB vs Existing Schedule Generations

- BFB schedule generation is orders of magnitude faster than previous methods.
- BFB schedule is always theoretically optimal on hypercube and 2D torus.

# of nodes	4	8	16	32	64	1024
SCCL	0.59s	0.86s	21.4s	$> 10^4 s$	$> 10^4 s$	$> 10^4 s$
TACCL	0.50s	7.39s	1801s	1802s	n/a	n/a
BFB	<0.01s	<0.01s	<0.01s	0.03s	0.17s	52.7s

Table: Generation Time on Hypercube

# of nodes	4	9	16	25	36	2500
SCCL	0.61s	1.00s	60s	3286s	$> 10^{4} s$	$> 10^{4} s$
TACCL	0.45s	67.8s	1801s	1802s	n/a	n/a
BFB	<0.01s	<0.01s	<0.01s	0.01s	0.03s	61.1s

Table: Generation Time on 2D Torus $(n \times n)$

Figure: Theoretical Performance of Schedules

BFB vs Existing Schedule Generations

- Unlike previous methods, BFB does not require parameter sweeps.
- Previous methods require specifying # of chunks for data dependency tracking and heuristic parameters to speedup.

Λ/	SCCL				TAC	TACCL w/o Symmetry			TACCL w/ Symmetry			RER	
74	c = 1	c=2	c=3	c=4	c=1	c=2	c=3	c=4	c=1	c=2	c=3	c=4	БГБ
Hypercube													
4	0.59	0.64	0.68	0.72	0.89	0.50	0.83	0.75	0.62	0.51	0.71	0.60	< 0.01
8	0.86	1.22	1.86	2.48	96.9	807	63.2	1800	7.97	645	7.39	1801	$<\!\!0.01$
16	21.4	48.4	130	573	1801	1801	1801	1802	1801	n/a	n/a	n/a	$<\!\!0.01$
32	>104	$> 10^{4}$	$> 10^{4}$	$>10^{4}$	1802	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.03
64	>104	$> 10^{4}$	$> 10^{4}$	$>10^{4}$	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.17
1024	>104	$> 10^{4}$	$> 10^{4}$	>104	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	52.7
					2	D Toru	$s(n \times r)$	i)					
4	0.61	0.63	0.67	0.76	0.68	0.50	0.82	0.72	0.45	0.51	0.76	0.64	< 0.01
9	1.00	1.51	2.22	3.44	1801	189	67.8	262	88.6	71.1	67.8	105	< 0.01
16	17.5	60	131	603	1801	1801	1801	1802	1801	1801	1801	n/a	< 0.01
25	3286	5641	>104	>104	1802	1802	1803	n/a	1802	n/a	n/a	n/a	0.01
36	>10 ⁴	>104	>104	>10 ⁴	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.03
2500	>104	>104	>104	>10 ⁴	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	61.1

Direct-Connect Optical Testbed

(a) A100 Servers

(b) Optical Patch Panel

- 12 servers, each with an NVIDIA A100 GPU.
- 100 Gbps HP NIC, configured as 4x25Gbps breakout interfaces.
- Topology is reconfigurable via a *Telescent* optical patch panel.

Allreduce Evaluation

- Generate our best bidirectional topologies for N = 5 to 12.
- Compare allreduce performance with shifted rings and double binary trees at data sizes 1KB, 1MB, and 1GB.
- **Result:** our topologies consistently outperform baselines across all topology sizes *N* and allreduce data sizes *M*.

Data-Parallel DNN Training Evaluation

(b) 12-node GPT-2 Training.

Frontera Supercomputer at the Texas Advanced Computing Center (TACC)

- Intel Xeon CPU nodes in a torus topology with 25 Gbps per link.
- **Result:** BFB torus schedules outperform all other schedules and remain efficient for tori with unequal dimensions.

Simulated Expert-Parallel Training

- Expert-parallel training involves both allreduce and all-to-all communications.
 - While allreduce can be overlapped, all-to-all remains on the critical path.
- At 1024-node training of 1.6T MoE model, our topology outperforms torus by 40%+.
 - Torus spends 58% of the time on all-to-all, while our topology only spends 30%.
- Our topologies remain within 5% of the theoretical lower bound all the time.

(a) Simulated Training of Switch Transformers.

(b) Training Timeline.

38 / 39

- In this work, we introduce
 - **Expansion techniques** to expand small-scale optimized topologies and schedules into large-scale ones.
 - **Breadth-First-Broadcast** method to generate efficient communication schedules for large-scale topologies in polynomial time.

Together, we enable efficient collective communications with direct-connect topologies.

• In evaluation, we demonstrate significant improvements over existing direct-connect topologies in collective communications and ML training performance.

Efficient Direct-Connect Topologies for Collective Communications arXiv: https://arxiv.org/abs/2202.03356 To be presented at NSDI '25