
Efficient Direct-Connect Topologies for Collective Communications

Liangyu Zhao1 Siddharth Pal2 Tapan Chugh1 Weiyang Wang3 Jason Fantl2

Prithwish Basu2 Joud Khoury2 Arvind Krishnamurthy1

1University of Washington 2RTX BBN Technologies 3MIT CSAIL

ACE Theme 3
To be presented at NSDI ’25

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 1 / 39

https://arxiv.org/abs/2202.03356

Table of Contents

1 Background

2 Solution

3 Evaluation

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 2 / 39

https://arxiv.org/abs/2202.03356

Collective Communication

Collective Communication: a set of communication operations among a group of nodes
in a parallel computing system, serving as building blocks for distributed computing.

e.g. broadcast, reduce, allgather, reduce-scatter, allreduce, all-to-all, etc.

Originally a topic in HPC, it is now extensively used for gradient, parameter, and
activation synchronization in distributed ML training and inferencing.

Allgather

node a node b node c

a

b

c

node a node b node c

a

b

c

a

b

c

a

b

c

Figure: Allgather Operation

a, b, c × a b c = a b c
Allgather

a, b, c

Figure: Distributed Matrix Multiplication

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 3 / 39

https://arxiv.org/abs/2202.03356

Collective Communication

We focus on accelerating allgather, reduce-scatter, and allreduce, three widely used
collective operations in distributed ML.

Focus on Allgather: allgather can be transformed into reduce-scatter and allreduce.

reduce-scatter = reversed allgather
allreduce = reduce-scatter + allgather

Allgather

node a node b node c

a

b

c

node a node b node c

a

b

c

a

b

c

a

b

c

Reduce-Scatter

node a node b node c

a

a

a

b

b

b

c

c

c

node a node b node c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

Allreduce

node a node b node c

a

a

a

b

b

b

c

c

c

node a node b node c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

a⊕b⊕c

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 4 / 39

https://arxiv.org/abs/2202.03356

Optical Circuit Network

An emerging approach is to use optical circuit network:

Higher bandwidth at lower capital expenditure and energy cost.

The network can be configured into any direct-connect topology.

Exhibit high reconfiguration latency, requiring relatively fixed topologies.

(a) SiP-ML (SIGCOMM ’21) (b) TopoOpt (NSDI ’23) (c) TPU (Google)

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 5 / 39

https://arxiv.org/abs/2202.03356

Direct-Connect Network

The topology of an optical circuit network can be modeled as a direct-connect network:

Nodes are directly connected without the use of packet switches. Pairs of unconnected
nodes cannot communicate directly.

The network can be unidirectional (directed graph) or bidirectional (undirected graph).

The topology is typically d-regular and homogeneous.

α-β cost model: the time cost of sending a size-M message over a link is α+M/b.

(a) Ring (b) Torus (c) de Bruijn

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 6 / 39

https://arxiv.org/abs/2202.03356

Research Problem

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Allreduce-Type Collectives (e.g., allgather, reduce-scatter, allreduce)

small large

Data Size

latency sensitive
low-diameter topology

throughput sensitive
load-balanced transmission

All-to-All Communication

Because of bandwidth tax, point-to-point flows should be as short as possible.
All-to-all throughput also requires low-diameter topology.

Workloads may require both low diameter and load-balanced allreduce.

e.g., expert-parallel training involving both allreduce and all-to-all.

Ideal Topology: low-diameter topology with load-balanced collective communication.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 7 / 39

https://arxiv.org/abs/2202.03356

Traditional HPC Topologies

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Traditional HPC topologies are limited to a few ring-based graphs.

e.g., ring, torus, multi-ring.

Pros: load-balanced collective, high-throughput allreduce-type collective operations.

Cons: high diameter, detrimental for all-to-all throughput and latency-sensitive
small-data allreduce.

(a) Ring (b) Torus (c) TopoOpt Multi-Ring

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 8 / 39

https://arxiv.org/abs/2202.03356

Low-Diameter Expander Graphs

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Low-diameter expander graphs from graph theory.

e.g., de Bruijn graph, Kautz graph.

Pros: low diameter, ideal for all-to-all throughput and small-data allreduce.

Cons: complex structure, lack of load-balanced allreduce-type schedules.

(a) de Bruijn Graph (b) Kautz Graph

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 9 / 39

https://arxiv.org/abs/2202.03356

Topology Dilemma

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Topology Type
Small-Data Allreduce

Latensy-Sensitive
Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional HPC
Topologies – ✓ –
Low-Diameter
Expander Graphs ✓ – ✓

Latency and all-to-all throughput are bounded by topology diameter.

Question: Can we have load-balanced allreduce schedules on low-diameter topologies?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 10 / 39

https://arxiv.org/abs/2202.03356

Topology Dilemma

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Topology Type
Small-Data Allreduce

Latensy-Sensitive
Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional HPC
Topologies × ✓ ×
Low-Diameter
Expander Graphs ✓ – ✓

Latency and all-to-all throughput are bounded by topology diameter.

Question: Can we have load-balanced allreduce schedules on low-diameter topologies?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 10 / 39

https://arxiv.org/abs/2202.03356

Topology Dilemma

Problem: For a given workload (e.g., ML or HPC), what is the most efficient topology?

Topology Type
Small-Data Allreduce

Latensy-Sensitive
Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional HPC
Topologies × ✓ ×
Low-Diameter
Expander Graphs ✓ ??? ✓

Latency and all-to-all throughput are bounded by topology diameter.

Question: Can we have load-balanced allreduce schedules on low-diameter topologies?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 10 / 39

https://arxiv.org/abs/2202.03356

Challenge

Challenge: Optimizing communication schedule can be computationally intractable.

Data Dependency: unlike point-to-point traffic, flow conservation is not sufficient to
maintain data dependency in collective communication due to multicast/aggregation.

Earlier works track data dependency in chunks, leading to NP-hard discrete optimization.

SCCL [PPoPP ’21] uses satisfiability modulo theories (SMT).
TACCL [NSDI ’23], TE-CCL [SIGCOMM ’24] use mixed integer linear program (MILP).

of nodes 4 8 16 32 64

SCCL 0.59s 0.86s 21.4s >104s >104s

TACCL 0.50s 7.39s 1801s 1802s n/a

Table: Generation Time on Hypercube

of nodes 4 9 16 25 36

SCCL 0.61s 1.00s 60s 3286s >104s

TACCL 0.45s 67.8s 1801s 1802s n/a

Table: Generation Time on 2D Torus (n×n)

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 11 / 39

https://arxiv.org/abs/2202.03356

Table of Contents

1 Background

2 Solution

3 Evaluation

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 12 / 39

https://arxiv.org/abs/2202.03356

Solution Overview

Expansion Techniques: expand small-scale optimized topologies and schedules into
large-scale ones.

Avoid intractable direct construction of large-scale topologies and schedules.

Schedule Generation: generate optimal Breadth-First-Broadcast (BFB) schedule on
large topologies.

Optimizing BFB schedule can be done with polynomial-time linear program.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 13 / 39

https://arxiv.org/abs/2202.03356

Expansion Techniques

Given a base topology and its associated communication schedule,

We have graph transformations to expand the base topology into larger ones.

The base schedule is also expanded to match the expanded topology.

The expansion involves simple mapping of nodes, edges, and data send/recv.

The sacrifice in overall performance is mathematically bounded during the process.

Line Graph Expansion:

a c

bd

1

2

2

1

ca

ac

adda

db

bd

bc cb

1

2

3

3

2

3

1

2 3

Degree Expansion:

a b

cd

a1 b1

c1d1

a2 b2

c2d2

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 14 / 39

https://arxiv.org/abs/2202.03356

Line Graph Expansion

We borrow the concept of line graph from graph theory:

Edge (u, v) in base graph G ⇐⇒ Node uv in the line graph L(G).

For every uv , vw node pair in the line graph, there is an edge (uv , vw).

NL(G) = NG · degG ; deg L(G) = degG .

a c

bd

(a) K2,2 (N = 4, d = 2)

a c

bd

ca

ac

adda

db

bd

bc cb

ca

ac

adda

db

bd

bc cb

(b) L(K2,2) (N = 8, d = 2)

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 15 / 39

https://arxiv.org/abs/2202.03356

Line Graph Expansion

The schedule can be mapped from base topology to the expanded topology:

Any (shortest) path w0)w1 → · · · → wn in K2,2 can be mapped to a (shortest) path
w−1w0 → w0w1 → · · · → wn−1wn → wnwn+1 in L(K2,2), for any w−1w0 ̸=wnwn+1.

Data going from ca to bd in L(K2,2) can follow the corresponding path of a to b in K2,2.

a c

bd

(a) K2,2 (N = 4, d = 2)

ca

ac

adda

db

bd

bc cb

(b) L(K2,2) (N = 8, d = 2)

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 16 / 39

https://arxiv.org/abs/2202.03356

Line Graph Expansion

Line graph expansion can be applied repeatedly
to scale topology and schedule indefinitely.

Node degree is preserved, friendly to hardware
constraints.

The performance sacrifice is limited.

If the base is throughput-optimal with N nodes,
then the expanded schedule is at most 1

(d−1)N

away from throughput optimality.
Expansion preserves low-diameter property.
N increases d-fold while diameter increases by 1.

1.00

1.02

1.04

1.06

T B
/T

* B

K4, 4
Complete
DiCirculant

H(2, 3)
BWOptimal
MooreOptimal

101 102 103 104
N

α
2α
3α
4α
5α
6α
7α

T L

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 17 / 39

https://arxiv.org/abs/2202.03356

Degree Expansion

G ∗n makes n copies of G , and connect (ai , bj) for any (a, b) in G .

deg(G ∗n) = n · degG ; NG∗n = n · NG .

Degree expansion preserves throughput optimality.

Broadcast path in figure (a) is mapped to non-overlapping red and blue paths in (c).

a b

cd

(a) G(N=4, d=1)

a1 b1

c1d1

a2 b2

c2d2

(b) G ∗2 (N=8, d=2)

a1 b1

c1d1

a2 b2

c2d2

(c) Broadcasts w.r.t. a1, a2

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 18 / 39

https://arxiv.org/abs/2202.03356

Cartesian Product Expansion

From graph theory, given graphs G1,G2, . . . ,Gn, we can construct a Cartesian product
graph G1□G2□ . . .□Gn.

NG1□G2□...□Gn
=

∏
i NGi ; deg(G1□G2□ . . .□Gn) =

∑
i deg(Gi).

G1□G2□ . . .□Gn is throughput-optimal if each Gi is throughput-optimal.

e.g., torus with arbitrary dimensions d1 × d2 × · · · × dn. Previously, only torus with equal
dimensions (d1 = d2 = · · · = dn) has efficient schedules.
Use BFB schedule generation (to be introduced later).
Cartesian product greatly expands the set of throughput-optimal topologies we construct.

(a) 4-Node Ring R4(N = 4, d = 2) (b) 3x4 Torus R3□R4(N = 12, d = 4)

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 19 / 39

https://arxiv.org/abs/2202.03356

Topology Finder

Given a target topology size, the topology finder explores all known base topologies and
potential combinations of expansion techniques.

The resulting candidate topologies and schedules form a Pareto-frontier. The best one is
then decided by hardware/workload specifications.

Pareto-frontier: low-diameter vs. load-balanced allreduce.
All-to-all performance is strongly related to graph diameter D(G).

Expansion Techniques # of Nodes Deg Moore BW

Line Graph Exp Ln(G) dnN d ✓ ×
Degree Exp G ∗ n nN nd × ✓
Cartesian Power G□n Nn nd × ✓
Cartesian Prod G1□. . .□Gn

∏
i Ni

∑
i di × ✓

Table: Summary of Expansion Techniques

Topology TL TB 2(TL+TB) D(G) All-to-All

Π4,1024 5α 1.332M/B 323.5us 5 409.1us
L3(C (16, {3, 4})) 6α 1.020M/B 291.0us 6 403.5us
L2(Diamond□2) 8α 1.004M/B 328.4us 8 446.6us
L(DBJMod(2, 4)□2) 11α 1.000M/B 387.8us 9 529.9us
(UniRing(1, 4)□UniRing(1, 8))□2 20α 0.999M/B 567.6us 20 1174.4us

Baseline: 32x32 Torus 62α 0.999M/B 1407.6us 32 1342.2us

Theoretical Bound 5α 0.999M/B 267.6us 5 382.3us

Table: Pareto-frontier for N=1024, d=4 with α=10µs
and M/B=1MB/100Gbps.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 20 / 39

https://arxiv.org/abs/2202.03356

Motivation

Observations:

Expansion techniques have huge gaps in the coverage of topology sizes.

Given a base topology with N = 4, d = 2, line graph expansion can only generate topologies
of 8, 16, 32, . . . (dnN) number of nodes.

There exist off-the-shelf low-diameter expander graphs from graph theory.

Question

Given a topology from graph theory, can we efficiently construct an efficient schedule for it?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 21 / 39

https://arxiv.org/abs/2202.03356

Breadth-First-Broadcast (BFB)

Allgather: each node broadcasts a shard of data simultaneously.

We perform a Breadth-First-Broadcast (BFB) from each node.

At time step t, from each source node, nodes at distance t − 1 collectively broadcast the
data shard to nodes at distance t.

A linear program is used to balance workloads on links at each time step.

Latency: data always follows the shortest paths, optimal for the given topology.

Throughput: provably throughput-optimal for many types of graphs.

Allgather

node a node b node c

a

b

c

node a node b node c

a

b

c

a

b

c

a

b

c

minimize Uu,t

subject to
∑
v

xv ,(w ,u),t ≤ Uu,t , ∀w ∈N−(u)∑
w

xv ,(w ,u),t = 1, ∀v ∈N−
t (u)

0 ≤xv ,(w ,u),t ≤ 1. ∀w , v

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 22 / 39

https://arxiv.org/abs/2202.03356

BFB Example

Breadth-First-Broadcast:

×

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 23 / 39

https://arxiv.org/abs/2202.03356

BFB Example

Breadth-First-Broadcast:

×

× ×

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 23 / 39

https://arxiv.org/abs/2202.03356

BFB Example

Breadth-First-Broadcast:

×

× ×

× × ×

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 23 / 39

https://arxiv.org/abs/2202.03356

BFB Example

Breadth-First-Broadcast:

× ×

× × ×

× × ×

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 23 / 39

https://arxiv.org/abs/2202.03356

BFB Example

Breadth-First-Broadcast:

× × ×

× × ×

× × ×

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 23 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Nodes a and c each have a data shard to
broadcast.

a b c

d e f

a c

a

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Broadcast data to neighbors.

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Broadcast data to neighbors.

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Broadcast data to node e.

Both b, d can provide shard a.

Both b, f can provide shard c .

Question: How can data be sent while bal-
ancing the workload across links?

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Perfect balance is achieved if

d sends 2
3 of shard a.

f sends 2
3 of shard c.

b sends 1
3 of shard a and 1

3 of shard c .

Each link sends 2
3 of a shard in total.

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Perfect balance is achieved if

d sends 2
3 of shard a.

f sends 2
3 of shard c.

b sends 1
3 of shard a and 1

3 of shard c .

Each link sends 2
3 of a shard in total.

a b c

d e f

a ca

a

c

c

1
3

2
3

1
3

2
3

2
3

2
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 24 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

For each node u ∈ V and time step t ∈ {1, 2, . . . ,D(G)},
Data shards from source nodes v at distance t to u should reach u at step t.

xv ,(w ,u),t is the proportion of v ’s shard sent through link (w , u) at step t.

Only nodes w on the shortest paths from v to u can provide v ’s data shard;
otherwise, xv ,(w ,u),t is undefined.

minimize Uu,t Minimize the max workload across links

subject to
∑
v

xv ,(w ,u),t ≤ Uu,t , ∀w ∈N−(u) Ensure Uu,t is the max workload∑
w

xv ,(w ,u),t = 1, ∀v ∈N−
t (u) Ensure u receives all the data

0 ≤xv ,(w ,u),t ≤ 1. ∀w , v

Solve the linear program for each u and t.

Question: Why is BFB able to use a polynomial-time linear program rather than NP-hard
discrete optimizations?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 25 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

For each node u ∈ V and time step t ∈ {1, 2, . . . ,D(G)},
Data shards from source nodes v at distance t to u should reach u at step t.

xv ,(w ,u),t is the proportion of v ’s shard sent through link (w , u) at step t.

Only nodes w on the shortest paths from v to u can provide v ’s data shard;
otherwise, xv ,(w ,u),t is undefined.

minimize Uu,t Minimize the max workload across links

subject to
∑
v

xv ,(w ,u),t ≤ Uu,t , ∀w ∈N−(u) Ensure Uu,t is the max workload∑
w

xv ,(w ,u),t = 1, ∀v ∈N−
t (u) Ensure u receives all the data

0 ≤xv ,(w ,u),t ≤ 1. ∀w , v

Solve the linear program for each u and t.

Question: Why is BFB able to use a polynomial-time linear program rather than NP-hard
discrete optimizations?

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 25 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g.,

{1, 2} and {3}, or {1, 3} and {2}.

Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2
3

3

3

3

2
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g.,

{1, 2} and {3}, or {1, 3} and {2}.

Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2
3

3

3

3

2
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g., {1, 2} and {3}

, or {1, 3} and {2}.
Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2
3

3

3

3

2
1

3

2
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g., {1, 2} and {3}, or {1, 3} and {2}.

Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2
3

3

3

3

2
1

2

3
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g., {1, 2} and {3}, or {1, 3} and {2}.
Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2
3

3

3

3

2
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Linear Program

Answer: BFB eliminates the need to track data dependencies using discrete data chunks.

What specific data are the 2
3 shard sent by d and

1
3 shard sent by b?

In BFB, they can be any parts of shard a, as
long as the union is the whole shard.

e.g., {1, 2} and {3}, or {1, 3} and {2}.
Only the amount of data to be sent needs to
be decided, not the specific data chunks,
enabling a continuous optimization.

BFB ensures that b, d receive the entire
shard before forwarding it to e, a guarantee
not provided by all scheduling methods.

a b c

d e f

1
2

3

3

3

3
2
1

1 or 2

2
1

1
3

2
3

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 26 / 39

https://arxiv.org/abs/2202.03356

BFB Search Space

Question: How does BFB achieve polynomial-time schedule generation?

Finding efficient schedules starting from the whole schedule space is NP-hard.

BFB schedules are a subset of the schedule space.

Finding efficient schedules within BFB schedule space is polynomial-time.

Schedule Space

Efficient
Schedules

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 27 / 39

https://arxiv.org/abs/2202.03356

BFB Search Space

Question: How does BFB achieve polynomial-time schedule generation?

Finding efficient schedules starting from the whole schedule space is NP-hard.

BFB schedules are a subset of the schedule space.

Finding efficient schedules within BFB schedule space is polynomial-time.

Schedule Space

Efficient
Schedules

NP-hard

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 27 / 39

https://arxiv.org/abs/2202.03356

BFB Search Space

Question: How does BFB achieve polynomial-time schedule generation?

Finding efficient schedules starting from the whole schedule space is NP-hard.

BFB schedules are a subset of the schedule space.

Finding efficient schedules within BFB schedule space is polynomial-time.

Schedule Space

Efficient
Schedules

BFB Schedule Space

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 27 / 39

https://arxiv.org/abs/2202.03356

BFB Search Space

Question: How does BFB achieve polynomial-time schedule generation?

Finding efficient schedules starting from the whole schedule space is NP-hard.

BFB schedules are a subset of the schedule space.

Finding efficient schedules within BFB schedule space is polynomial-time.

Schedule Space

Efficient
Schedules

BFB Schedule Space

Polynomial Time

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 27 / 39

https://arxiv.org/abs/2202.03356

BFB Optimality

BFB linear program gives the optimal BFB schedule.
Question: the optimal BFB schedule = the globally optimal schedule?

Schedule Space

Efficient
Schedules

BFB Schedule Space

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 28 / 39

https://arxiv.org/abs/2202.03356

BFB Optimality

BFB linear program gives the optimal BFB schedule.
Question: the optimal BFB schedule = the globally optimal schedule?

Case 1: the optimal BFB schedule is the globally optimal schedule.

Topologies with certain symmetry properties, e.g., torus with arbitrary dimensions,
twisted torus used by TPU v4, circulant graph, distance-regular graph.
Cartesian product of graphs with globally optimal BFB schedules.

Schedule Space

BFB Schedule Space

opt

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 28 / 39

https://arxiv.org/abs/2202.03356

BFB Optimality

BFB linear program gives the optimal BFB schedule.
Question: the optimal BFB schedule = the globally optimal schedule?

Case 2: the optimal BFB schedule is efficient but not the globally optimal schedule.

The optimal BFB schedule is close to throughput optimality, e.g., generalized Kautz Graphs.

Schedule Space

BFB Schedule Space

opt

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 28 / 39

https://arxiv.org/abs/2202.03356

BFB Optimality

BFB linear program gives the optimal BFB schedule.
Question: the optimal BFB schedule = the globally optimal schedule?

Case 3: the optimal BFB schedule is not efficient at all.

Random topologies without any symmetry properties.
Throughput optimality in all cases—see follow-up work ForestColl (arXiv:2402.06787).

Schedule Space

BFB Schedule Space

opt

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 28 / 39

https://arxiv.org/abs/2402.06787
https://arxiv.org/abs/2202.03356

BFB Efficient Topologies

Throughput-optimal topologies with BFB:

Torus with arbitrary dimensions
Cartesian product of rings, which have globally optimal BFB schedules.
Previous schedules are only efficient on torus with equal dimensions (e.g., n×n, n×n ×n)

Twisted Torus used by Google TPU v4
Computationally verified for at least N ≤ 104.

(a) 3x4 2D Torus (b) 4x2 Twisted Torus

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 29 / 39

https://arxiv.org/abs/2202.03356

BFB Efficient Topologies

Circulant Graph: throughput-optimal with BFB.
Can be constructed for any N and even-value d .
Significant improvement over ring in latency if throughput optimality is required.

d = 4: total-hop latency ≈
√
2N
2

instead of N − 1.

Generalized Kautz Graph: diameter is at most one hop away from Moore Bound.
Can be constructed for any N and d .
Close to throughput optimality:

1.00
1.25
1.50
1.75
2.00

d=2

1.00
1.25
1.50
1.75
2.00

d=4

0 250 500 750 1000 1250 1500 1750 2000
1.00
1.25
1.50
1.75
2.00

d=8

0 250 500 750 1000 1250 1500 1750 2000
1.00
1.25
1.50
1.75
2.00

d=16

T B
/T

* B

N

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 30 / 39

https://arxiv.org/abs/2202.03356

BFB vs Existing Schedule Generations

BFB schedule generation is orders of magnitude faster than previous methods.

BFB schedule is always theoretically optimal on hypercube and 2D torus.

of nodes 4 8 16 32 64 1024
SCCL 0.59s 0.86s 21.4s >104s >104s >104s

TACCL 0.50s 7.39s 1801s 1802s n/a n/a

BFB <0.01s <0.01s <0.01s 0.03s 0.17s 52.7s

Table: Generation Time on Hypercube

of nodes 4 9 16 25 36 2500
SCCL 0.61s 1.00s 60s 3286s >104s >104s

TACCL 0.45s 67.8s 1801s 1802s n/a n/a

BFB <0.01s <0.01s <0.01s 0.01s 0.03s 61.1s

Table: Generation Time on 2D Torus (n×n)

1

2

3

4

T B
/(M

/B
)

Hypercube

1

2

3
2D Torus (n× n)

4 8 16 32 64

10

20

T L
/α

4 9 16 25 36

10

20

30

N

TACCL w/o sym
TACCL w/ sym

SCCL
BFB

Optimal

c=1
c=2
c=3
c=4
best

Figure: Theoretical Performance of Schedules

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 31 / 39

https://arxiv.org/abs/2202.03356

BFB vs Existing Schedule Generations

Unlike previous methods, BFB does not require parameter sweeps.

Previous methods require specifying # of chunks for data dependency tracking and
heuristic parameters to speedup.

N
SCCL TACCL w/o Symmetry TACCL w/ Symmetry

BFB
c=1 c=2 c=3 c=4 c=1 c=2 c=3 c=4 c=1 c=2 c=3 c=4

Hypercube

4 0.59 0.64 0.68 0.72 0.89 0.50 0.83 0.75 0.62 0.51 0.71 0.60 <0.01
8 0.86 1.22 1.86 2.48 96.9 807 63.2 1800 7.97 645 7.39 1801 <0.01
16 21.4 48.4 130 573 1801 1801 1801 1802 1801 n/a n/a n/a <0.01
32 >104 >104 >104 >104 1802 n/a n/a n/a n/a n/a n/a n/a 0.03
64 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 0.17
1024 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 52.7

2D Torus (n × n)

4 0.61 0.63 0.67 0.76 0.68 0.50 0.82 0.72 0.45 0.51 0.76 0.64 <0.01
9 1.00 1.51 2.22 3.44 1801 189 67.8 262 88.6 71.1 67.8 105 <0.01
16 17.5 60 131 603 1801 1801 1801 1802 1801 1801 1801 n/a <0.01
25 3286 5641 >104 >104 1802 1802 1803 n/a 1802 n/a n/a n/a 0.01
36 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 0.03
2500 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 61.1

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 32 / 39

https://arxiv.org/abs/2202.03356

Table of Contents

1 Background

2 Solution

3 Evaluation

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 33 / 39

https://arxiv.org/abs/2202.03356

Direct-Connect Optical Testbed

(a) A100 Servers (b) Optical Patch Panel

12 servers, each with an NVIDIA A100 GPU.

100 Gbps HP NIC, configured as 4x25Gbps
breakout interfaces.

Topology is reconfigurable via a Telescent
optical patch panel.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 34 / 39

https://arxiv.org/abs/2202.03356

Allreduce Evaluation

Generate our best bidirectional topologies for N = 5 to 12.

Compare allreduce performance with shifted rings and double binary trees at data sizes
1KB, 1MB, and 1GB.

Result: our topologies consistently outperform baselines across all topology sizes N and
allreduce data sizes M.

N Topology TL

5 Complete Graph: K5 2α

6
Degree Expansion of
Complete graph: K3 ∗ 2 4α

7 Circulant Graph: C (7, {2, 3}) 4α

8 Complete Bipartite Graph: K4,4 4α

9 Hamming Graph: H(2, 3) 4α

10
Degree Expansion of BFB augmented
Bidirectional Ring: BiRing(2, 5) ∗ 2 4α

11 Circulant Graph: C (11, {2, 3}) 4α

12 Circulant Graph: C (12, {2, 3}) 4α 6 8 10 12
0

50

100

150

200

250

300
Ti

m
e

(u
s)

M= 1KB

6 8 10 12
Number of Nodes (N)

0

200

400

600

800
M= 1MB

6 8 10 12
0

1

2

3

1e5 M= 1GB

ShiftedRing
ShiftedBFBRing
DBT
OurBestTopo

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 35 / 39

https://arxiv.org/abs/2202.03356

Data-Parallel DNN Training Evaluation

1.0 1.5 2.0 2.5
Total Allreduce Time

alexnet
inception_v3

resnet18
resnet50

shufflenet_v2_x2_0
squeezenet1_1

vgg16
vgg19

transformer
RNN/LSTM

Testbed (N= 8, d= 4)

1.0 1.2 1.4
Iteration Time

our
SR
DBT

(a) 8-node Small Model Training.

gpt2-
small

(124M)

gpt2-
medium
(355M)

gpt2-
large

(774M)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ite
ra

tio
n

Ti
m

e
(s

)

our

our our

SR

SR
SR

DBT

DBT

DBT
Testbed (N= 12, d= 4)

Forward
Backward

(b) 12-node GPT-2 Training.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 36 / 39

https://arxiv.org/abs/2202.03356

Supercomputing Evaluation

Frontera Supercomputer at the Texas Advanced Computing Center (TACC)

Intel Xeon CPU nodes in a torus topology with 25 Gbps per link.

Result: BFB torus schedules outperform all other schedules and remain efficient for tori
with unequal dimensions.

105 107 109
0

2

4

al
gb

w
(G

B/
s)

3x3x2 Torus

105 107 109

M (byte)

3x3x3 Torus

105 107 109

3x3x3x2 Torus
BFB
trad
SCCL
TACCL

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 37 / 39

https://arxiv.org/abs/2202.03356

Simulated Expert-Parallel Training

Expert-parallel training involves both allreduce and all-to-all communications.

While allreduce can be overlapped, all-to-all remains on the critical path.

At 1024-node training of 1.6T MoE model, our topology outperforms torus by 40%+.

Torus spends 58% of the time on all-to-all, while our topology only spends 30%.

Our topologies remain within 5% of the theoretical lower bound all the time.

64 128 256
0.0

0.5

1.0

1.5

Ite
ra

tio
n

Ti
m

e
(s

)

LB

LB
LB

our

our
our

SR
SR SR

tor

tor

switch-base-256 (14.7B)

512 1024
0

2

4

6

8

LB LBour our

SR SR

tor

switch-c-2048 (1.6T)

Number of Nodes (N)

All-to-All Non-Overlapped Allreduce Compute

(a) Simulated Training of Switch Transformers.

t t+ 20 t+ 40 t+ 60 t+ 80
Time (ms)

comm
comp

Non-Expert Expert All-to-All Allreduce

(b) Training Timeline.

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 38 / 39

https://arxiv.org/abs/2202.03356

Conclusion

In this work, we introduce

Expansion techniques to expand small-scale optimized topologies and schedules into
large-scale ones.
Breadth-First-Broadcast method to generate efficient communication schedules for
large-scale topologies in polynomial time.

Together, we enable efficient collective communications with direct-connect topologies.

In evaluation, we demonstrate significant improvements over existing direct-connect
topologies in collective communications and ML training performance.

Efficient Direct-Connect Topologies for Collective Communications
arXiv: https://arxiv.org/abs/2202.03356
To be presented at NSDI ’25

Zhao et al. (UW, BBN, MIT) arXiv:2202.03356 (NSDI ’25) ACE Theme 3 39 / 39

https://arxiv.org/abs/2202.03356
https://arxiv.org/abs/2202.03356

	Background
	Solution
	Evaluation

